• Title/Summary/Keyword: Real-Time Dynamic Simulation

Search Result 530, Processing Time 0.029 seconds

A Study on the Vehicle Dynamic Characteristics Considering Powertrain and Brake Systems (동력전달계와 제동계를 고려한 차량의 운동 특성에 관한 연구)

  • Bae, Sang-Woo;Lee, Chi-Bum;Yun, Jung-Rak;Lee, Jang-Moo;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.684-689
    • /
    • 2000
  • In this paper, the equations of motion about vehicle, powertrain and brake system were derived. The vehicle has eight degrees of freedom with nonlinear tire model and the powertrain has two degrees of freedom containing engine, torque converter and four speed automatic transmission. The brake system has two states about front and rear brake line pressures. The transient tire model with first order time lag is also subjoined for low speed or stop-and-go simulation. The modeling was derived considering two points - the fidelity and the simplicity. The simulation using this model is similar with real vehicle dynamic behavior and the model is made as simple as possible far fast simulation. It is validated that the derived vehicle model can be applicable to the real time simulation.

  • PDF

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

Framework for Component-based Modeling/Simulation of Discrete Event Systems

  • Cho, Young-Ik;Kim, Jae-Hyun;Kim, Tag-Gon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.484-484
    • /
    • 2001
  • The sophistication of current software applications results in the increasing cost fur software development time. The component-based software development framework is proposed to overcome the difficulty and time-consuming requirements by modularity and reusability. As is the general software case, a component-based simulation framework encourages the reusability of the real system model based on the modularity of the applied simulation methodology. This paper presents a component-based simulation environment that is based on the DEVS/COM run-time infrastructure. The DEVS (Discrete Event System Specification) formalism provides a formal modeling and simulation framework for the generic dynamic systems [1] and Microsoft's COM (Component Object Model) is one of the strongest competitor fur the component standard. The reusability by the DEVS/COM simulation environment saves model development time remarkably and component technology make simulator itself to be a subparts of real application.

  • PDF

Methodological study on the High Dynamic Range Imaging Processing (채광·조명설비시스템의 광학 분석을 위한 이미지 프로세싱 기법에 관한 연구)

  • Lim, Hong Soo;Kim, Gon
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 2010
  • Recently, various daylight evaluation methods for visual environment have been developed; simulation analysis methods, numerical calculation, and data monitoring methods. However, it is impossible for simulation analysis to make real scenes and visualize real images exactly. Also, a numerical calculation is considered as an out of date and time-consuming mean. Therefore, for acquisition of accurate results, many studies often use the monitoring data methods. Especially, most studies regarding discomfort glare are evaluated by measuring the physical quantity of luminance through traditional measuring Minolta Luminance meters as an instrument. But, this method has a difficulty in measuring several points at the same time because of the limitation of spaces and time when mapping. So, this study focused on the potential usefulness of High Dynamic Range photography technique as a luminance mapping tool. In order to evaluate the accuracy of proposed programs such as webHDR, Photomatix and PHOTOLUX, this paper has conducted an experiment by using Canon EOS 5D and NICON Coolpix8400 digital camera.

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

An Intermediate Model for Development of a Simulation Program of a Production System with Robots (로봇 응용 생산시스템의 시뮬레이션 프로그램 개발을 위한 중간모델)

  • Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.132-143
    • /
    • 1999
  • In this study, an intermediate model is presented as a new method for development of a parametric simulation program. This model enables us to analyze effectively the static and dynamic structure of a real production system. The static structure of the real system can be modelled in an entity-relationship diagram and the dynamic structure of the real system in a Petri net. The intermediate model consists of an entity-relationship diagram and a Petri net. Using this intermediate model man can not only reduce the time and cost for simulation program development, but also increase the modelling reliability of the developed simulation program. To show the usefulness of this intermediate model. the intermediate models for two production subsystems, manufacturing sub-system and transport subsystem, are set up.

  • PDF

Information Propagation Neural Networks for Real-time Recognition of Vehicles in bad load system (최악환경의 도로시스템 주행시 장애물의 인식율 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sop;Lee, Hai-Ki;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.90-95
    • /
    • 2003
  • For the safety driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implemented.

  • PDF

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Development of Simple Dynamic Models for Ship Manoeuvring Simulation (선박 조종 시뮬레이션을 위한 단순 기동 모델 개발)

  • Kim, Dong-Jin;Yeo, Dong-Jin;Rhee, Key-Pyo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.17-25
    • /
    • 2010
  • It is necessary for the ship dynamic models to realize ship dynamics and to achieve the real-time analysis in the manoeuvring simulation. Generally, simple dynamic models, such as 1st-order differential equation models of turning angle, turning rate, and forward speed, are used in the manoeuvring simulation for multiple ships. Ship dynamic modeling and parameter estimation methods based on its turning test results are proposed in this paper. Parameter estimation methods for the constant speed model and the speed-changing model are mathematically developed and verified by comparing with turning test results of a real ship.

Evolutionary Computation for the Real-Time Adaptive Learning Control(II) (실시간 적응 학습 제어를 위한 진화연산(II))

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.730-734
    • /
    • 2001
  • In this study in order to confirm the algorithms that are suggested from paper (I) as the experimental result, as the applied results of the hydraulic servo system are very strong a non-linearity of the fluid in the computer simulation, the real-time adaptive learning control algorithms is validated. The evolutionary strategy has characteristics that are automatically. adjusted in search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accord with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time as the description of the paper (I). The possibility of a new approaching algorithm that is suggested from the computer simulation of the paper (I) would be proved as the verification of a real-time test and the consideration its influence from the actual experiment.

  • PDF