• Title/Summary/Keyword: Real-Time Computer Vision

Search Result 361, Processing Time 0.024 seconds

Design and Implementation of OpenCV-based Inventory Management System to build Small and Medium Enterprise Smart Factory (중소기업 스마트공장 구축을 위한 OpenCV 기반 재고관리 시스템의 설계 및 구현)

  • Jang, Su-Hwan;Jeong, Jopil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.161-170
    • /
    • 2019
  • Multi-product mass production small and medium enterprise factories have a wide variety of products and a large number of products, wasting manpower and expenses for inventory management. In addition, there is no way to check the status of inventory in real time, and it is suffering economic damage due to excess inventory and shortage of stock. There are many ways to build a real-time data collection environment, but most of them are difficult to afford for small and medium-sized companies. Therefore, smart factories of small and medium enterprises are faced with difficult reality and it is hard to find appropriate countermeasures. In this paper, we implemented the contents of extension of existing inventory management method through character extraction on label with barcode and QR code, which are widely adopted as current product management technology, and evaluated the effect. Technically, through preprocessing using OpenCV for automatic recognition and classification of stock labels and barcodes, which is a method for managing input and output of existing products through computer image processing, and OCR (Optical Character Recognition) function of Google vision API. And it is designed to recognize the barcode through Zbar. We propose a method to manage inventory by real-time image recognition through Raspberry Pi without using expensive equipment.

A New CSR-DCF Tracking Algorithm based on Faster RCNN Detection Model and CSRT Tracker for Drone Data

  • Farhodov, Xurshid;Kwon, Oh-Heum;Moon, Kwang-Seok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1415-1429
    • /
    • 2019
  • Nowadays object tracking process becoming one of the most challenging task in Computer Vision filed. A CSR-DCF (channel spatial reliability-discriminative correlation filter) tracking algorithm have been proposed on recent tracking benchmark that could achieve stat-of-the-art performance where channel spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process with only two simple standard features, HoGs and Color names. However, there are some cases where this method cannot track properly, like overlapping, occlusions, motion blur, changing appearance, environmental variations and so on. To overcome that kind of complications a new modified version of CSR-DCF algorithm has been proposed by integrating deep learning based object detection and CSRT tracker which implemented in OpenCV library. As an object detection model, according to the comparable result of object detection methods and by reason of high efficiency and celerity of Faster RCNN (Region-based Convolutional Neural Network) has been used, and combined with CSRT tracker, which demonstrated outstanding real-time detection and tracking performance. The results indicate that the trained object detection model integration with tracking algorithm gives better outcomes rather than using tracking algorithm or filter itself.

Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM (광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식)

  • Chun, Jun-Chul;Shin, Gi-Han
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.55-70
    • /
    • 2009
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.

  • PDF

Real-time pupil motion recognition and efficient character selection system using FPGA and OpenCV (FPGA와 OpenCV를 이용한 실시간 눈동자 모션인식과 효율적인 문자 선택 시스템)

  • Lee, Hee Bin;Heo, Seung Won;Lee, Seung Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.393-394
    • /
    • 2018
  • In this paper, the new system which improve the previously reported "Implementation to human-computer interface system with motion tracking using OpenCV and FPGA" is introduced and in this system, a character selection system for the physically uncomfortable patients is proposed. Using OpenCV, the eye area is detected, the pupil position is determined, and then the results are sent to the FPGA, and the character is selected finally. The method to minimize the pupil movement of the patient is used to output the character according to the user's intention. Using OpenCV, various computer vision algorithms can be easily applied, and using programmable FPGA, a pupil motion recognition and character selection system are implemented with a low cost.

  • PDF

Design of a Background Image Based Multi-Degree-of-Freedom Pointing Device (배경영상 기반 다자유도 포인팅 디바이스의 설계)

  • Jang, Suk-Yoon;Kho, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.133-141
    • /
    • 2008
  • As interactive multimedia have come into wide use, user interfaces such as remote controllers or classical computer mice have several limitations that cause inconvenience. We propose a vision-based pointing device to resolve this problem. We analyzed the moving image from the camera which is embedded in the pointing device and estimate the movement of the device. The pose of the cursor can be determined from this result. To process in the real time, we used the low resolution of $288{\times}208$ pixel camera and comer points of the screen were tracked using local optical flow method. The distance from screen and device was calculated from the size of screen in the image. The proposed device has simple configurations, low cost, easy use, and intuitive handhold operation like traditional mice. Moreover it shows reliable performance even in the dark condition.

Research Trends and Case Study on Keypoint Recognition and Tracking for Augmented Reality in Mobile Devices (모바일 증강현실을 위한 특징점 인식, 추적 기술 및 사례 연구)

  • Choi, Heeseung;Ahn, Sang Chul;Kim, Ig-Jae
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.45-55
    • /
    • 2015
  • In recent years, keypoint recognition and tracking technologies are considered as crucial task in many practical systems for markerless augmented reality. The keypoint recognition and technologies are widely studied in many research areas, including computer vision, robot navigation, human computer interaction, and etc. Moreover, due to the rapid growth of mobile market related to augmented reality applications, several effective keypoint-based matching and tracking methods have been introduced by considering mobile embedded systems. Therefore, in this paper, we extensively analyze the recent research trends on keypoint-based recognition and tracking with several core components: keypoint detection, description, matching, and tracking. Then, we also present one of our research related to mobile augmented reality, named mobile tour guide system, by real-time recognition and tracking of tour maps on mobile devices.

A Study on Sensor-Based Upper Full-Body Motion Tracking on HoloLens

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.39-46
    • /
    • 2021
  • In this paper, we propose a method for the motion recognition method required in the industrial field in mixed reality. In industrial sites, movements (grasping, lifting, and carrying) are required throughout the upper full-body, from trunk movements to arm movements. In this paper, we use a method composed of sensors and wearable devices that are not vision-based such as Kinect without using heavy motion capture equipment. We used two IMU sensors for the trunk and shoulder movement, and used Myo arm band for the arm movements. Real-time data coming from a total of 4 are fused to enable motion recognition for the entire upper body area. As an experimental method, a sensor was attached to the actual clothes, and objects were manipulated through synchronization. As a result, the method using the synchronization method has no errors in large and small operations. Finally, through the performance evaluation, the average result was 50 frames for single-handed operation on the HoloLens and 60 frames for both-handed operation.

Real-time traffic light information recognition based on object detection models (객체 인식 모델 기반 실시간 교통신호 정보 인식)

  • Joo, eun-oh;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.81-93
    • /
    • 2022
  • Recently, there have been many studies on object recognition around the vehicle and recognition of traffic signs and traffic lights in autonomous driving. In particular, such the recognition of traffic lights is one of the core technologies in autonomous driving. Therefore, many studies for such the recognition of traffic lights have been performed, the studies based on various deep learning models have increased significantly in recent. In addition, as a high-quality AI training data set for voice, vision, and autonomous driving is released on AIHub, it makes it possible to develop a recognition model for traffic lights suitable for the domestic environment using the data set. In this study, we developed a recognition model for traffic lights that can be used in Korea using the AIHub's training data set. In particular, in order to improve the recognition performance, we used various models of YOLOv4 and YOLOv5, and performed our recognition experiments by defining various classes for the training data. In conclusion, we could see that YOLOv5 shows better performance in the recognition than YOLOv4 and could confirm the reason from the architecture comparison of the two models.

An Extraction Method of Number Plates for Various Vehicles Using Digital Signal Analysis Processing Techniques (디지털 신호 분석 기법을 이용한 다양한 번호판 추출 방법)

  • Yang, Sun-Ok;Jun, Young-Min;Jung, Ji-Sang;Ryu, Sang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.12-19
    • /
    • 2008
  • Detection of a number plate consists of three stages; division of a number plate, extraction of each character from the plate, recognition of the characters. Among of these three states, division stage of a number plate is the most important part and also the most time-consuming state. This paper suggests an effective region extraction method of a number plate for various images obtained from unmanned inspection systems of illegal parking violation, especially when we have to consider the diverse surrounding environments of roads. Our approaching method detects each region by investigating the characteristics in changes of brightness and intensity between the background part and character part, and the characteristics on character parts such as the sizes, heights, widths, and distance in between two characters. The method also divides a number plate into different types of the plate. This research can solve the number plate region detection failure problems caused by plate edge damages not only for Korean domestic number plates but also for new European style number plates. The method also reduces the time consumption by processing the detection in real-time, therefore, it can be used as a practical solution.

Stereo Matching Algorithm Based on Fast Guided Image Filtering for 3-Dimensional Video Service (3차원 비디오 서비스를 위한 고속 유도 영상 필터링 기반 스테레오 매칭 알고리즘)

  • Hong, Gwang-Soo;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.523-529
    • /
    • 2016
  • Stereo matching algorithm is an essential part in computer vision and photography. Accuracy and computational complexity are challenges of stereo matching algorithm. Much research has been devoted to stereo matching based on cost volume filtering of matching costs. Local stereo matching based guided image filtering (GIF) has a computational complexity of O(N), but is still not enough to provide real-time 3-dimensional (3-D) video services. The proposed algorithm concentrates reduction of computational complexity using the concept of fast guided image filter, which increase the speed up to $O(N/\small{s}^2)$ with a sub-sampling ratio $\small{s}$. Experimental results indicated that the proposed algorithm achieves effective local stereo matching as well as a fast execution time for 3-D video service.