• Title/Summary/Keyword: Real-Time Computer Vision

Search Result 356, Processing Time 0.027 seconds

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

Estimation of Distance and Direction for Tracking of the Moving Object

  • Kang, Sung-Kwan;Park, Jong-An
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.557-557
    • /
    • 2000
  • Tracking of the moving object, which is realized by the computer vision, is used for military and industrial fields. It is the application technique with imply complicated processing for understanding the input images. But, in these days, the most moving object tracking algorithms have many difficult problems. A typical problem is the increase of calculation time depending on target number. For this reason, there are many studies to solve real time processing problems and errors for background environmental change. In this paper, we used optical flow which is one of moving object tracking algorithms. It represents vector of the moving object. Optical flow estimation based on the regularization method depends on iteration method but it is very sensitive the noise. We proposed a new method using the Combinatorial Hough Transform (CHT) and Voting Accumulation in order to find optimal constraint lines. Also, we used the logical operation in order to release the operation time. The proposed method can easily and accurately extract the optical flow of moving object area and the moving information. We have simulated the proposed method using the test images. This images are included the noise. Experimental results show that the proposed method get better flow and estimate accurately the moving information.

  • PDF

Deep Learning Based Tank Aiming line Alignment System (딥러닝 기반 전차 조준선 정렬 시스템)

  • Jeong, Gyu-Been;Park, Jae-Hyo;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.285-290
    • /
    • 2021
  • The existing aiming inspection use foreign-made aiming inspection equipment. However, the quantity is insufficient and the difficult to maintain. So it takes a lot of time to inspect the target. This system can reduces the time of aiming inspection and be maintained and distributed smoothly because it is a domestic product. In this paper, we develop a system that can detect targets and monitor shooting results through a target detection deep learning model. The system is capable of real-time detection of targets and has significantly increased the identification rate through several preprocessing of distant targets. In addition, a graphical user interface is configured to facilitate user camera manipulation and storage and management of training result data. Therefore the system can replace the currently used aiming inspection equipment and non-fire training.

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

Development of an Integrated Traffic Object Detection Framework for Traffic Data Collection (교통 데이터 수집을 위한 객체 인식 통합 프레임워크 개발)

  • Yang, Inchul;Jeon, Woo Hoon;Lee, Joyoung;Park, Jihyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.191-201
    • /
    • 2019
  • A fast and accurate integrated traffic object detection framework was proposed and developed, harnessing a computer-vision based deep-learning approach performing automatic object detections, a multi object tracking technology, and video pre-processing tools. The proposed method is capable of detecting traffic object such as autos, buses, trucks and vans from video recordings taken under a various kinds of external conditions such as stability of video, weather conditions, video angles, and counting the objects by tracking them on a real-time basis. By creating plausible experimental scenarios dealing with various conditions that likely affect video quality, it is discovered that the proposed method achieves outstanding performances except for the cases of rain and snow, thereby resulting in 98% ~ 100% of accuracy.

The Vessels Traffic Measurement and Real-time Track Assessment using Computer Vision (컴퓨터 비젼을 이용한 선박 교통량 측정 및 항적 평가)

  • Joo, Ki-Se;Jeong, Jung-Sik;Kim, Chol-Seong;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.131-136
    • /
    • 2011
  • The furrow calculation and traffic measurement of sailing ship using computer vision are useful methods to prevent maritime accident by predicting the possibility of an accident occurrence in advance. In this paper, sailing ships are recognized using image erosion, differential operator and minimax value, which can be verified directly because the calculated coordinates are displayed on electronic navigation chart. The developed algorithm based on area information of this paper has the advantage which is compared to the conventional radar system focused on point information.

Deep Learning Model Selection Platform for Object Detection (사물인식을 위한 딥러닝 모델 선정 플랫폼)

  • Lee, Hansol;Kim, Younggwan;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, object recognition technology using computer vision has attracted attention as a technology to replace sensor-based object recognition technology. It is often difficult to commercialize sensor-based object recognition technology because such approach requires an expensive sensor. On the other hand, object recognition technology using computer vision may replace sensors with inexpensive cameras. Moreover, Real-time recognition is viable due to the growth of CNN, which is actively introduced into other fields such as IoT and autonomous vehicles. Because object recognition model applications demand expert knowledge on deep learning to select and learn the model, such method, however, is challenging for non-experts to use it. Therefore, in this paper, we analyze the structure of deep - learning - based object recognition models, and propose a platform that can automatically select a deep - running object recognition model based on a user 's desired condition. We also present the reason we need to select statistics-based object recognition model through conducted experiments on different models.

A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies

  • Shi, Yinyan;Wang, Xiaochan;Borhan, Md Saidul;Young, Jennifer;Newman, David;Berg, Eric;Sun, Xin
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.563-588
    • /
    • 2021
  • Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.

A Study on the Trigger Technology for Vehicle Occupant Detection (차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구)

  • Lee, Dongjin;Lee, Jiwon;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.120-122
    • /
    • 2021
  • Currently, as demand for cars at home and abroad increases, the number of vehicles is decreasing and the number of vehicles is increasing. This is the main cause of the traffic jam. To solve this problem, it operates a high-ocompancy vehicle (HOV) lane, a multi-passenger vehicle, but many people ignore the conditions of use and use it illegally. Since the police visually judge and crack down on such illegal activities, the accuracy of the crackdown is low and inefficient. In this paper, we propose a system design that enables more efficient detection using imaging techniques using computer vision to solve such problems. By improving the existing vehicle detection method that was studied, the trigger was set in the image so that the detection object can be selected and the image analysis can be conducted intensively on the target. Using the YOLO model, a deep learning object recognition model, we propose a method to utilize the shift amount of the center point rather than judging by the bounding box in the image to obtain real-time object detection and accurate signals.

  • PDF

Segmentation of underwater images using morphology for deep learning (딥러닝을 위한 모폴로지를 이용한 수중 영상의 세그먼테이션)

  • Ji-Eun Lee;Chul-Won Lee;Seok-Joon Park;Jea-Beom Shin;Hyun-Gi Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.370-376
    • /
    • 2023
  • In the underwater image, it is not clear to distinguish the shape of the target due to underwater noise and low resolution. In addition, as an input of deep learning, underwater images require pre-processing and segmentation must be preceded. Even after pre-processing, the target is not clear, and the performance of detection and identification by deep learning may not be high. Therefore, it is necessary to distinguish and clarify the target. In this study, the importance of target shadows is confirmed in underwater images, object detection and target area acquisition by shadows, and data containing only the shape of targets and shadows without underwater background are generated. We present the process of converting the shadow image into a 3-mode image in which the target is white, the shadow is black, and the background is gray. Through this, it is possible to provide an image that is clearly pre-processed and easily discriminated as an input of deep learning. In addition, if the image processing code using Open Source Computer Vision (OpenCV)Library was used for processing, the processing speed was also suitable for real-time processing.