• Title/Summary/Keyword: Real time observation

Search Result 472, Processing Time 0.029 seconds

Seismic Research Network in KIGAM (한국자원연구소 지진 네트워크)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.49-56
    • /
    • 2000
  • Instrumental observation of earth quakes in KIGAM was first attempted in the earty 1980`s by using 6 portable seismographs in the vicinity of Yang-San Faults. Now twenty-four permanent stations, which are equipped with short-period or broad-band seismometer, are included in seismic research network in KIGAM, including KSRS array station in Wonju which is consisted of 26 bore-hole stations. The seismic network of KIGAM is also linked to that of KEPRI(Korea Electric Power Research Institute)which is consisted of eight stations installed within and around the nuclear power plants. Owing to real-time data acquisition by telemetry, it became feasible to automatically locate hypocenters of the local events within fifteen minutes by computer data processing system, named KEMS(Korea Earthquake Monitoring System). Results of the hypocenter determination, together with observational data, are compiled and stored in the data base system. And they are published via web site whose URL is http://quake.kigam.re.kr KIGAM is also running t재 permanent geomagnetic stations installed in Daejun and Kyungju. The observed geomagnetic data are transmitted to Earthquake Research Centre in KIGAM by seismic network and compiled for the purpose of earthquake prediction research and other basic geophysical research.

  • PDF

Identifying the Effects of Repeated Tasks in an Apartment Construction Project Using Machine Learning Algorithm (기계적 학습의 알고리즘을 이용하여 아파트 공사에서 반복 공정의 효과 비교에 관한 연구)

  • Kim, Hyunjoo
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.

Study of Shearography Imaging for Quantity Evaluation Defects in Woven CFRP Composite Materials (직조 CFRP 복합재료 내부결함의 정량적 평가를 위한 Shearography 영상처리 기법 연구)

  • 최상우;이준현;이정호;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively. In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF

A Spatial Average Method Using 2nd Order Sampling in Ultrasonic Doppler System (초음파 도플러 시스템에서 2차 샘플링을 이용한 공간축상의 평균 방법)

  • 백광렬
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.279-288
    • /
    • 1995
  • Ultrasonic Doppler systems for the purpose of estimating blood flow velocity, blood flow volume, and flow imaging are commonly used due to advantages of non-invasive and real time observation. Specially, the technical developments of color flow mapping (2-D Doppler) systems have made a relatively rapid progress. However, the 2-D Doppler systems have several problems, such as the range ambiguity, low signal to noise ratio, and slow frame rate. The slow frame rate problem is resolved by using the spatial average which is a method to acquire more data samples for mean frequency estimation. In this paper, spatial average method using the 2nd order sampling instead of quadrature sampling is proposed. The experimental results show that the proposed methods have good performance and easy application to the color flow mapping system.

  • PDF

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Recognition and Generation of Facial Expression for Human-Robot Interaction (로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법)

  • Jung Sung-Uk;Kim Do-Yoon;Chung Myung-Jin;Kim Do-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju (제주 실시간 일사량의 기계학습 예측 기법 연구)

  • Lee, Young-Mi;Bae, Joo-Hyun;Park, Jeong-keun
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

Graph Compression by Identifying Recurring Subgraphs

  • Ahmed, Muhammad Ejaz;Lee, JeongHoon;Na, Inhyuk;Son, Sam;Han, Wook-Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.816-819
    • /
    • 2017
  • Current graph mining algorithms suffers from performance issues when querying patterns are in increasingly massive network graphs. However, from our observation most data graphs inherently contains recurring semantic subgraphs/substructures. Most graph mining algorithms treat them as independent subgraphs and perform computations on them redundantly, which result in performance degradation when processing massive graphs. In this paper, we propose an algorithm which exploits these inherent recurring subgraphs/substructures to reduce graph sizes so that redundant computations performed by the traditional graph mining algorithms are reduced. Experimental results show that our graph compression approach achieve up to 69% reduction in graph sizes over the real datasets. Moreover, required time to construct the compressed graphs is also reasonably reduced.

Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

  • Roh, Kyoung-Min;Park, Eun-Seo;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.