• Title/Summary/Keyword: Real scale

Search Result 2,316, Processing Time 0.028 seconds

Techniques to Guarantee Real-Time Fault Recovery in Spark Streaming Based Cloud System (Spark Streaming 기반 클라우드 시스템에서 실시간 고장 복구를 지원하기 위한 기법들)

  • Kim, Jungho;Park, Daedong;Kim, Sangwook;Moon, Yongshik;Hong, Seongsoo
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.460-468
    • /
    • 2017
  • In a real-time cloud environment, the data analysis framework plays a pivotal role. Spark Streaming meets most real-time requirements among existing frameworks. However, the framework does not meet the second scale real-time fault recovery requirement. Spark Streaming fault recovery time increases in proportion to the transformation history length called lineage. This is because it recovers the last state data based on the cumulative lineage recorded during normal operation. Therefore, fault recovery time is not bounded within a limited time. In addition, it is impossible to achieve a second-scale fault recovery time because it costs tens of seconds to read initial state data from fault-tolerant storage. In this paper, we propose two techniques to solve the problems mentioned above. We apply the proposed techniques to Spark Streaming 1.6.2. Experimental results show that the fault recovery time is bounded and the average fault recovery time is reduced by up to 41.57%.

A Study on Developing Intrusion Detection System Using APEX : A Collaborative Research Project with Jade Solution Company (APEX 기반 침입 탐지 시스템 개발에 관한 연구 : (주)제이드 솔류션과 공동 연구)

  • Kim, Byung-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • Attacking of computer and network is increasing as information processing technology heavily depends on computer and network. To prevent the attack of system and network, host and network based intrusion detection system has developed. But previous rule based system has a lot of difficulties. For this reason demand for developing a intrusion detection system which detects and cope with the attack of system and network resource in real time. In this paper we develop a real time intrusion detection system which is combination of APEX and LS-SVM classifier. Proposed system is for nonlinear data and guarantees convergence. While real time processing system has its advantages, such as memory efficiency and allowing a new training data, it also has its disadvantages of inaccuracy compared to batch way. Therefore proposed real time intrusion detection system shows similar performance in accuracy compared to batch way intrusion detection system, it can be deployed on a commercial scale.

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

A Real Scale Experimental Study for Evaluation of Permissible Shear Stresses on Vegetation Mats (식생매트 허용 소류력 평가를 위한 실규모 실험 연구)

  • Lee, Du Han;Kim, Dong-Hee;Kim, Myounghwan;Rhee, Dong Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6151-6158
    • /
    • 2012
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. Roughness and shear stress are evaluated by 1 D non-uniform model. After each tests, changes in mat surfaces and sub-soil are evaluated, and from these evaluation, 3 types of mat surface damages and 2 types of sub-soil damages are presented. In the study, the case in which some damages in mat surface don't cause loss of sub-soil, is presented to be in the stable condition. Appling this stable condition and acting shear stresses, permissible shear stresses of vegetation mats are evaluated, and the results show that the reinforced mat with wire netting has more permissible shear stress.

Temperature distribution in a full-scale steel framed building subject to a natural fire

  • Wald, Frantisek;Chladna, Magdalena;Moore, David;Santiago, Aldina;Lennon, Tom
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.159-182
    • /
    • 2006
  • Current fire design codes for determining the temperature within the structural elements that form part of a complete building are based on isolated member tests subjected to the standard fire. However, the standard time-temperature response bears little relation to real fires and doesn't include the effects of differing ventilation conditions or the influence of the thermal properties of compartment linings. The degree to which temperature uniformity is present in real compartments is not addressed and direct flame impingement may also have an influence, which is not considered. It is clear that the complex thermal environmental that occurs within a real building subject to a natural fire can only be addressed using realistic full-scale tests. To study global structural and thermal behaviour, a research project was conducted on the eight storey steel frame building at the Building Research Establishment's Cardington laboratory. The fire compartment was 11 m long by 7 m wide. A fire load of $40kg/m^2$ was applied together with 100% of the permanent actions and variable permanent actions and 56% of live actions. This paper summarises the experimental programme and presents the time-temperature development in the fire compartment and in the main supporting structural elements. Comparisons are also made between the test results and the temperatures predicted by the structural fire Eurocodes.

Development of Real Time Monitoring Program Using Geostatistics and GIS (GIS 및 지구통계학을 이용한 실시간 통합계측관리 프로그램 개발)

  • Han, Byung-Won;Park, Jae-Sung;Lee, Dae-Hyung;Lee, Gye-Choon;Kim, Sung-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1046-1053
    • /
    • 2006
  • In the large scale recent reclaiming works performed within the wide spatial boundary, evaluation of long-term consolidation settlement and residual settlement of the whole construction area is sometimes made with the results of the limited ground investigation and measurement. Then the reliability of evaluation has limitations due to the spatial uncertainty. Additionally, in case of large scale deep excavation works such as urban subway construction, there are a lot of hazardous elements to threaten the safety of underground pipes or adjacent structures. Therefore it is necessary to introduce a damage prediction system of adjacent structures and others. For the more accurate analysis of monitoring information in the wide spatial boundary works and large scale urban deep excavations, it is necessary to perform statistical and spatial analysis considering the geographical spatial effect of ground and monitoring information in stead of using diagrammatization method based on a time-series data expression that is traditionally used. And also it is necessary that enormous ground information and measurement data, digital maps are accumulated in a database, and they are controlled in a integrating system. On the abovementioned point of view, we developed Geomonitor 2.0, an Internet based real time monitoring program with a new concept by adding GIS and geo-statistical analysis method to the existing real time integrated measurement system that is already developed and under useful use. The new program enables the spatial analysis and database of monitoring data and ground information, and helps the construction- related persons make a quick and accurate decision for the economical and safe construction.

  • PDF

Integrity Estimation for Concrete Pontoon of Floating Structure (콘크리트 부유식 구조물 함체의 건전성 평가)

  • Park, Soo-Yong;Kim, Min-Jin;Seo, Young-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.527-533
    • /
    • 2013
  • This paper presents damage detection and estimation of stiffness parameter on a concrete scale model and a real structure of concrete pontoon using dynamic properties such as mode shapes and natural frequencies. In case of damage detection, dynamic impact test on a concrete scale model is accomplished to extract mode shapes and the practicality is verified by utilizing a damage detection technique. And the stiffness parameter of a real structure of concrete pontoon was estimated via system identification technique using the natural frequencies of the structure. The results indicate that the damaged elements of the scale model are found exactly using damage detection technique and the effective stiffness property of the real structure of concrete pontoon can be estimated by system identification technique.

A Study of Fire Extinguishment Characteristic for the Real Scale Deap-Seated Fire (실규모 심부화재 소화특성에 관한 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Real scale fire tests was carried out for extinguishing performance evaluation of the wetting agent. The experiment was conducted in accordance with a Class A fire extinguishing test methods specified in the 'Type Approval of the Manual System Fire Extinguisher and Technical Standards of Test'. In addition, the subjects of this experiment were the wood flour and rice husk. Fire-fighting water, the three kinds of wetting agents used in the country and this study was used, was undertaken to determine a clear discrimination of the water and wetting agent. In the experimental results, it was confirmed that the internal temperature is maintained long time in the case of water. The internal temperature were rapidly lowered in the experiment of wetting agents. Therefore, the discrimination of extinguishing ability was confirmed by the temperature distribution in accordance with time. Based on the results of this experiment, this study is expected to be used as a underlying material on presenting a method of optimized performance evaluation of wetting extinguishing agent.