Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
Smart Structures and Systems
/
v.30
no.3
/
pp.327-332
/
2022
In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.
Journal of The Korean Association of Information Education
/
v.26
no.1
/
pp.35-44
/
2022
Previous studies showed that an improvement in attitude toward a subject affects academic achievement in the subject. The purpose of this study is to confirm that the AI education program causes changes in the AI attitude of gifted children in elementary school, and that the change in attitude leads to a change in literacy. In this study, we conducted an AI education program for gifted children, and analyze the effect of AI education program on the change in AI attitude AI literacy through pre- and post-test. The result of the analysis showed the statistically significant improvement of AI attitudes. In addition, through regression analysis it was found that the change in AI attitude has a statistically significant direct effect on the change in AI literacy. This study has a limitation in that self-evaluation was used to measure AI attitudes and literacy and conducted to a relatively small number of samples. Even though, it was also confirmed that the activities of making an AI programs experienced in real-life can cause changes in AI attitudes and literacy.
Moon, Da Hye;Kim, Jeeyoung;Lim, Myoung Nam;Bak, So Hyen;Kim, Woo Jin
Tuberculosis and Respiratory Diseases
/
v.84
no.3
/
pp.188-199
/
2021
Background: Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with increased prevalence in the elderly. Telomeres are repetitive DNA sequences found at the end of the chromosome, which progressively shorten as cells divide. Telomere length is known to be a molecular marker of aging. This study aimed to assess the relationship between telomere length and the risk of COPD, lung function, respiratory symptoms, and emphysema index in Chronic Obstructive Pulmonary Disease in Dusty Areas (CODA) cohort. Methods: We extracted DNA from the peripheral blood samples of 446 participants, including 285 COPD patients and 161 control participants. We measured absolute telomere length using quantitative real-time polymerase chain reaction. All participants underwent spirometry and quantitative computed tomography scan. Questionnaires assessing respiratory symptoms and the COPD Assessment Test was filled by all the participants. Results: The mean age of participants at the baseline visit was 72.5±7.1 years. Males accounted for 72% (321 participants) of the all participants. The mean telomere length was lower in the COPD group compared to the non-COPD group (COPD, 16.81±13.90 kb; non-COPD, 21.97±14.43 kb). In COPD patients, 112 (75.7%) were distributed as tertile 1 (shortest), 91 (61.1%) as tertile 2 and 82 (55%) as tertile 3 (longest). We did not find significant associations between telomere length and lung function, exacerbation, airway wall thickness, and emphysema index after adjusting for sex, age, and smoking status. Conclusion: In this study, the relationship between various COPD phenotypes and telomere length was analyzed, but no significant statistical associations were shown.
Huisoo, Jang;Hyeonji, Cho;Tae-Joon, Jeon;Sun Min, Kim
Journal of the Korean Society of Visualization
/
v.20
no.3
/
pp.136-145
/
2022
Later flow immunoassay (LFIA) is a protein analytical method based on immunoreaction. On the LFIA based protein analytical method, bioreceptor molecule plays a key role, and so a system that evaluates and manages the binding affinity of bioreceptor is needed to secure detection reliability. In this study, Lateral Flow Immunoassay based rapid Bioreceptor Screening Method (rBSM) is presented that provide a simple and quick evaluating method for the binding affinity to the target protein of the antibody as model bioreceptor. To verify this evaluation method, Virus-like particles (VLP) and anti-VLP antibodies are selected as a model norovirus, which is target protein, and the candidate bioreceptors respectively. Among the 5 different candidate antibodies, appropriate antibody could be sorted out within 30 minutes through rBSM. In addition, selected antibodies were applied to two representative LFIA based techniques, sandwich assay and competitive assay. Among these methods, sandwich assay showed more effective VLP detection method. Through applying selected antibodies and techniques to the commercialized mass production lines, an VLP detecting LFIA kit was developed with a detection limit of 1012 copies/g of VLPs in real samples. Since this proposed method in this study could be easily transformable into other combinations with bioreceptors, it is expected that this technique would be applied to LFIA kit development system and bioreceptor quality management.
Various approaches have been applied to transform aquaculture from a manual, labour-intensive industry to one dependent on automation technologies in the era of the fourth industrial revolution. Technologies associated with the monitoring of physical condition have successfully been applied in most aquafarm facilities; however, real-time biological monitoring systems that can observe fish condition and behaviour are still required. In this study, we used a video recorder placed on top of a fish tank to observe the swimming patterns of rock bream (Oplegnathus fasciatus), first one fish alone and then a group of five fish. Rock bream in the video samples were successfully identified using the you-only-look-once v3 algorithm, which is based on the Darknet-53 convolutional neural network. In addition to recordings of swimming behaviour under normal conditions, the swimming patterns of fish under abnormal conditions were recorded on adding an anaesthetic or lowering the salinity. The abnormal conditions led to changes in the velocity of movement (3.8 ± 0.6 cm/s) involving an initial rapid increase in speed (up to 16.5 ± 3.0 cm/s, upon 2-phenoxyethanol treatment) before the fish stopped moving, as well as changing from swimming upright to dying lying on their sides. Machine learning was applied to datasets consisting of normal or abnormal behaviour patterns, to evaluate the fish behaviour. The proposed algorithm showed a high accuracy (98.1%) in discriminating normal and abnormal rock bream behaviour. We conclude that artificial intelligence-based detection of abnormal behaviour can be applied to develop an automatic bio-management system for use in the aquaculture industry.
Park, Hee-Seon;Jeong, Hye-Yun;Kim, Young-Suk;Seo, Chang-Seob;Ha, Hyekyung;Kwon, Hyo-Jung
Journal of Veterinary Science
/
v.21
no.3
/
pp.39.1-39.15
/
2020
Background: There are various Helicobacter species colonizing the stomachs of animals. Although Helicobacter species usually cause asymptomatic infection in the hosts, clinical signs can occur due to gastritis associated with Helicobacter in animals. Among them, Helicobacter pylori is strongly associated with chronic gastritis, gastric ulcers, and gastric cancers. As the standard therapies used to treat H. pylori have proven insufficient, alternative options are needed to prevent and eradicate the diseases associated with this bacterium. Cheonwangbosim-dan (CBD), a traditional herbal formula that is popular in East Asia, has been commonly used for arterial or auricular flutter, neurosis, insomnia, and cardiac malfunction-induced disease. Objectives: The present study investigated the antimicrobial effect of CBD on H. pylori-infected human gastric carcinoma AGS cells and model mice. Methods: AGS cells were infected with H. pylori and treated with a variety of concentrations of CBD or antibiotics. Mice were given 3 oral inoculations with H. pylori and then dosed with CBD (100 or 500 mg/kg) for 4 weeks or with standard antibiotics for 1 week. One week after the last treatment, gastric samples were collected and examined by histopathological analysis, real-time quantitative polymerase chain reaction, and immunoblotting. Results: Our results showed that CBD treatment of AGS cells significantly reduced the H. pylori-induced elevations of interleukin-8, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). In the animal model, CBD treatment inhibited the colonization of H. pylori and the levels of malondialdehyde, inflammation, proinflammatory cytokines, iNOS, and COX-2 in gastric tissues. CBD also decreased the phosphorylation levels of p38 mitogen-activated protein kinase family. Conclusions: This study suggests that CBD might be a prospective candidate for treating H. pylori-induced gastric injury.
The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.
Kim, Kyung-Ok;Duong, Van-An;Han, Na-Young;Park, Jong-Moon;Kim, Jung Ho;Lee, Hookeun;Baek, Jeong-Heum
Mass Spectrometry Letters
/
v.13
no.3
/
pp.84-94
/
2022
Neoadjuvant chemoradiotherapy (nCRT) is a standard therapy used for locally advanced rectal cancer prior to surgery, which can more effectively reduce the locoregional recurrence rate and radiation toxicity compared to postoperative chemoradiotherapy. The response of patients to nCRT varies, and thus, robust biomarkers for predicting a pathological complete response are necessary. This study aimed to identify possible biomarkers involved in the complete response/non-response of rectal cancer patients to nCRT. Comparative proteomic analysis was performed on rectal tissue samples before and after nCRT. Proteins were extracted for label-free proteomic analysis. Western blot and real-time PCR were performed using rectal cancer cell line SNU-503 and radiation-resistant rectal cancer cell line SNU-503R80Gy. A total of 135 up- and 93 down-regulated proteins were identified in the complete response group. Six possible biomarkers were selected to evaluate the expression of proteins and mRNA in SNU-503 and SNU-503R80Gy cell lines. Lyso-phosphatidylcholine acyltransferase 2, annexin A13, aldo-ketose reductase family 1 member B1, and cathelicidin antimicrobial peptide appeared to be potential biomarkers for predicting a pathological complete response to nCRT. This study identified differentially expressed proteins and some potential biomarkers in the complete response group, which would be further validated in future studies.
Chu, Mi Ae;Jang, Yoon Young;Lee, Dong Won;Kim, Sung Hoon;Ryoo, Namhee;Park, Sunggyun;Lee, Jae Hee;Chung, Hai Lee
Clinical and Experimental Pediatrics
/
v.64
no.12
/
pp.652-660
/
2021
Background: Viral load and shedding duration are highly associated with the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, limited studies have reported on viral load or shedding in children and adolescents infected with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Purpose: This study aimed to investigate the natural course of viral load in asymptomatic or mild pediatric cases. Methods: Thirty-one children (<18 years) with confirmed SARS-CoV-2 infection were hospitalized and enrolled in this study. Viral loads were evaluated in nasopharyngeal swab samples using real-time reverse transcription polymerase chain reaction (E, RdRp, N genes). cycle threshold (Ct) values were measured when patients met the clinical criteria to be released from quarantine. Results: The mean age of the patients was 9.8 years, 18 (58%) had mild disease, and 13 (42%) were asymptomatic. Most children were infected by adult family members, most commonly by their mothers. The most common symptoms were fever and sputum (26%), followed by cough and runny nose. Nine patients (29%) had a high or intermediate viral load (Ct value≤30) when they had no clinical symptoms. Viral load showed no difference between symptomatic and asymptomatic patients. Viral rebounds were found in 15 cases (48%), which contributed to prolonged viral detection. The mean duration of viral detection was 25.6 days. Viral loads were significantly lower in patients with viral rebounds than in those with no rebound (E, P=0.003; RdRp, P=0.01; N, P=0.02). Conclusion: Our study showed that many pediatric patients with coronavirus disease 2019 (COVID-19) experienced viral rebound and showed viral detection for more than 3 weeks. Further studies are needed to investigate the relationship between viral rebound and infectiousness in COVID-19.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.2
/
pp.181-192
/
2022
The emergence of new malware is incapacitating existing signature-based malware detection techniques., and applying various anti-analysis techniques makes it difficult to analyze. Recent studies related to signature-based malware detection have limitations in that malware creators can easily bypass them. Therefore, in this study, we try to build a machine learning model that can detect and classify the anti-analysis techniques of packers applied to malware, not using the characteristics of the malware itself. In this study, the n-gram opcodes are extracted from the malicious binary to which various anti-analysis techniques of the commercial packers are applied, and the features are extracted by using TF-IDF, and through this, each anti-analysis technique is detected and classified. In this study, real-world malware samples packed using The mida and VMProtect with multiple anti-analysis techniques were trained and tested with 6 machine learning models, and it constructed the optimal model showing 81.25% accuracy for The mida and 95.65% accuracy for VMProtect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.