• 제목/요약/키워드: Real road dataset

검색결과 16건 처리시간 0.021초

Waymo Open Dataset 기반 자율차의 주행행태분석을 통한 주행안정성 평가지표 도출 (Derivation of Driving Stability Indicators for Autonomous Vehicles Based on Analyzing Waymo Open Dataset)

  • 이호윤;지정훈;오철;김호선
    • 한국ITS학회 논문지
    • /
    • 제23권4호
    • /
    • pp.94-109
    • /
    • 2024
  • 무인 자율차의 공도 주행이 허용됨에 따라 연구에 활용가능한 자율차의 실도로 주행 데이터가 증가하는 추세이다. 따라서 혼합교통류 상황에서 실제 자율차가 교통안전에 미치는 영향을 분석할 수 있게 되었다. 자율차가 교통안전에 미치는 영향을 파악하기 위해서는 자율차의 주행행태를 효과적으로 반영할 수 있는 평가지표의 활용이 요구된다. 본 연구의 목적은 Waymo Open Dataset을 통해 자율차의 주행행태를 분석하여 단속류 도로 구간별 주행안정성을 평가하기 위한 주요 지표를 도출하는 것이다. 주성분 분석을 통해 단속류 도로 구간별 데이터에 대한 설명력이 높은 평가지표를 선별하고 주요 평가지표로 정의하였다. 이때, 종방향과 횡방향 주행 안정성을 구분하여 각각에 대한 주요 평가지표를 제시하였다. 이후 동일한 주요 평가지표가 도출된 단속류 도로 구간을 대상으로 주행안정성을 비교하였다. 비신호교차로 대비 곡선 단일로 구간에서 종방향 주행안정성이 약 35.48% 높게 도출되었다. 횡방향 주행안정성의 경우 비신호교차로 대비 신호교차로 구간에서 주행안정성이 76.08% 높게 도출되었으며, 직선 단일로가 곡선 단일로에 비해 146.87% 높은 것으로 도출되었다. 본 연구의 결과는 자율차의 실도로 주행 데이터를 활용한 자율차의 교통안전 영향 분석 시 기초 자료로 활용할 수 있을 것으로 기대된다.

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • 한국인공지능학회지
    • /
    • 제11권3호
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

자율주행 차량의 학습 데이터 자동 생성 시스템 개발 (Development of Autonomous Vehicle Learning Data Generation System)

  • 윤승제;정지원;홍준;임경일;김재환;김형주
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.162-177
    • /
    • 2020
  • 자율주행시스템에서 다양한 센서를 기반으로 한 외부환경 인지는 주행안전성과 직접적인 관계가 있다. 최근 머신러닝/심층 신경망 기술의 발전으로 심층 신경망 기반의 인지 모델이 사용됨에 따라, 인지 알고리즘의 올바른 학습과 이를 위한 양질의 학습데이터가 필수적으로 요구된다. 그러나 자율주행에 발생할 수 있는 모든 상황을 데이터를 수집하는 것은 현실적인 어려움이 많다. 해외와 국내의 교통 환경의 차이로 인지 모델의 성능이 저하되기도 하며, 센서가 정상동작을 못하는 악천우에 대한 데이터는 수집이 어려우며 질적인 부분을 보장하지 못한다. 때문에, 실제 도로가 아닌 시뮬레이터 내 가상 도로 환경을 구축하여 합성 데이터를 수집하는 접근법이 필요하다. 본 논문에서는 국내 실정에 맞게 국내 도로 상황을 모사한 시뮬레이터 환경 안에 날씨와 조도, 차량의 종류와 대수, 센서의 위치를 다양화하여 학습데이터를 수집하였고, 보다 더 좋은 성능을 위해 적대적 생성 모델을 활용하여 이미지의 도메인을 보다 실사에 가깝게 바꾸고 다양화 하였다. 그리고 위 데이터로 학습한 인지 모델을 실제 도로 환경에서 수집한 시험 데이터에 성능 평가를 진행하여, 실제 환경 데이터만으로 학습한 모델과 비슷한 성능을 내는 것을 보였다.

실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템 (Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis)

  • 정회평;송호민;최영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권1호
    • /
    • pp.82-89
    • /
    • 2024
  • 블랙 아이스는 인지하기가 매우 어렵고 도로 노면의 마찰력이 감소하여 자동차 사고를 유발한다. 도로 노면의 블랙아이스 방지를 위한 다양한 연구가 수행되었으나, 실시간으로 블랙아이스를 식별하고 운전자에게 경고하는 시스템에 대한 연구는 매우 미흡한 실정이다. 본 논문에서는 아스팔트 도로 노면의 상태를 실시간적으로 식별하기 위해 이미지기반 분석 시스템을 개발하였다. 이를 위해 각 아스팔트 도로 노면 이미지에 대해 데이터 세트를 구축한 다음 딥러닝을 통해 노면의 상태를 건조, 젖음, 블랙아이스, 눈 노면 상태로 식별하였다. 또한, 이미지 분석결과와 더불어 도로 노면 상태의 최종판별을 위해 실제 노면에서 측정된 온도와 습도 데이터를 사용하였다. 도로 노면의 특성이 블랙아이스로 판정이 나면, 도로에 설치된 염수 분사장치가 자동으로 작동하도록 하였다. 본 연구에서 개발된 아스팔트 콘크리트 포장에 대한 노면 상태 식별 시스템과 블랙아이스 자동 예방 시스템은 운전자의 안전운행을 보장하고 교통사고 발생률을 낮출 수 있을 것으로 기대된다.

초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조 (Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation)

  • 김영현;하지석;최철호;문병인
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.51-58
    • /
    • 2022
  • 첨단 운전자 보조 시스템(advanced driver assistance system)의 주요 기능 중 하나인 주행 가능 영역 검출은 차량이 안전하게 주행할 수 있는 영역을 검출하는 것을 의미한다. 주행 가능 영역 검출은 운전자의 안전과 밀접한 연관이 있으며 실시간 동작과 높은 정확도 성능을 요구한다. 이러한 조건들을 충족하기 위해, 영상의 각 행에서 도로 시차 값을 계산하여 주행 가능 영역을 검출하는 V-시차 기반 방법이 폭넓게 사용된다. 그러나 V-시차 기반 방법은 시차 값이 정확하지 않거나 객체의 시차 값이 도로의 시차 값과 동일한 경우, 도로가 아닌 영역을 도로로 오검출할 수 있다. 또한, 고속도로 및 시골길과 같이, 초목을 포함한 도로 환경에서 초목의 시차는 도로의 시차 특성과 매우 유사하기 때문에 초목 영역이 주행 가능 영역으로 오검출될 수 있다. 이에 본 논문에서는 V-시차의 특성으로 인한 오검출 횟수를 감소시킴으로써 초목 영역을 포함한 도로 환경에서 높은 정확도를 갖는 주행 가능 영역 검출 방법 및 하드웨어 구조를 제안한다. 제안하는 방법의 성능을 평가하기 위해 KITTI road dataset의 289장 영상을 사용하였을 때, 제안하는 방법은 90.12%의 정확도와 97.96%의 재현율을 보인다. 또한, 제안하는 하드웨어 구조를 FPGA 플랫폼에 구현하였을 때, 제안하는 하드웨어 구조는 8925개의 slice registers와 7066개의 slice LUTs를 사용한다.

구미시내 긴급차량의 도달시간 산정을 위한 Network해석 (Network Analysis for Estimating Reach Time of Emergency Vehicles in Gumi City)

  • 이진덕;박민철;박희영;강소희
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.363-365
    • /
    • 2010
  • In this study, based on numerical map GIS-T Dataset build and by using ArcGIS Network Analysis emergency vehicle's reach time were analyzed. AutoCad using 1: 50,000 based on roads and hospitals of numerical map were creating a Polyline and Point and Network Dataset made using ArcCatalog. ArcGIS Analysis setting the interval for the period reached 3 minutes, 5 minutes, 15 minutes was set and then U-Turn was set to not allow because U-turn takes a long time to calculate and does not happen often on the real road. Intersection of the passage of time, considering that the emergency vehicles were set to 3 seconds. To expand by taking advantage of this facility on Vulnerable area will be used as base material. If we focus on analyzing the emergency activity to convert little data, To prepare for disaster and disaster will be able to use the materials.

  • PDF

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

Revolutionizing Traffic Sign Recognition with YOLOv9 and CNNs

  • Muteb Alshammari;Aadil Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • 제24권8호
    • /
    • pp.14-20
    • /
    • 2024
  • Traffic sign recognition is an essential feature of intelligent transportation systems and Advanced Driver Assistance Systems (ADAS), which are necessary for improving road safety and advancing the development of autonomous cars. This research investigates the incorporation of the YOLOv9 model into traffic sign recognition systems, utilizing its sophisticated functionalities such as Programmable Gradient Information (PGI) and Generalized Efficient Layer Aggregation Network (GELAN) to tackle enduring difficulties in object detection. We employed a publically accessible dataset obtained from Roboflow, which consisted of 3130 images classified into five distinct categories: speed_40, speed_60, stop, green, and red. The dataset was separated into training (68%), validation (21%), and testing (12%) subsets in a methodical manner to ensure a thorough examination. Our comprehensive trials have shown that YOLOv9 obtains a mean Average Precision (mAP@0.5) of 0.959, suggesting exceptional precision and recall for the majority of traffic sign classes. However, there is still potential for improvement specifically in the red traffic sign class. An analysis was conducted on the distribution of instances among different traffic sign categories and the differences in size within the dataset. This analysis aimed to guarantee that the model would perform well in real-world circumstances. The findings validate that YOLOv9 substantially improves the precision and dependability of traffic sign identification, establishing it as a dependable option for implementation in intelligent transportation systems and ADAS. The incorporation of YOLOv9 in real-world traffic sign recognition and classification tasks demonstrates its promise in making roadways safer and more efficient.

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.13-20
    • /
    • 2022
  • 본 연구에서는 주행 차량의 실시간 연료소모량을 예측할 수 있는 머신러닝 기법을 제안하고 그 특성을 분석하였다. 머신러닝 학습을 위해 실도로 주행을 실시하여 주행 속도, 가속도, 도로 구배와 함께 연료소모량을 측정하였다. 특성 데이터로 속도, 가속도, 도로구배를, 타깃으로 연료소모량을 지정하여 다양한 머신러닝 모델을 학습시켰다. 회귀법에 해당하는 K-최근접이웃회귀 및 선형회귀와 함께, 분류법에 해당하는 K-최근접이웃분류, 로지스틱회귀, 결정트리, 랜덤포레스트, 그래디언부스팅을 사용하였다. 실시간 연료소모량에 대한 예측 정확도는 0.5 ~ 0.6 수준으로 전반적으로 낮았고, 회귀법의 경우 분류법보다 정확도가 떨어졌다. 총연료소모량에 대한 예측 오차는 0.2 ~ 2.0% 수준으로 상당히 정확했고, 분류법보다 회귀법의 오차가 더 낮았다. 이는 예측 정확도의 기준으로 결정계수(R2)를 사용했기 때문인데, 이 값이 작을수록 타깃의 평균 부근에 예측치가 좁게 분포하기 때문이다. 따라서 실시간 연료소모량 예측에는 분류법이, 총연료소모량 예측에는 회귀법이 적합하다고 할 수 있다.