무인 자율차의 공도 주행이 허용됨에 따라 연구에 활용가능한 자율차의 실도로 주행 데이터가 증가하는 추세이다. 따라서 혼합교통류 상황에서 실제 자율차가 교통안전에 미치는 영향을 분석할 수 있게 되었다. 자율차가 교통안전에 미치는 영향을 파악하기 위해서는 자율차의 주행행태를 효과적으로 반영할 수 있는 평가지표의 활용이 요구된다. 본 연구의 목적은 Waymo Open Dataset을 통해 자율차의 주행행태를 분석하여 단속류 도로 구간별 주행안정성을 평가하기 위한 주요 지표를 도출하는 것이다. 주성분 분석을 통해 단속류 도로 구간별 데이터에 대한 설명력이 높은 평가지표를 선별하고 주요 평가지표로 정의하였다. 이때, 종방향과 횡방향 주행 안정성을 구분하여 각각에 대한 주요 평가지표를 제시하였다. 이후 동일한 주요 평가지표가 도출된 단속류 도로 구간을 대상으로 주행안정성을 비교하였다. 비신호교차로 대비 곡선 단일로 구간에서 종방향 주행안정성이 약 35.48% 높게 도출되었다. 횡방향 주행안정성의 경우 비신호교차로 대비 신호교차로 구간에서 주행안정성이 76.08% 높게 도출되었으며, 직선 단일로가 곡선 단일로에 비해 146.87% 높은 것으로 도출되었다. 본 연구의 결과는 자율차의 실도로 주행 데이터를 활용한 자율차의 교통안전 영향 분석 시 기초 자료로 활용할 수 있을 것으로 기대된다.
In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.
In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.
자율주행시스템에서 다양한 센서를 기반으로 한 외부환경 인지는 주행안전성과 직접적인 관계가 있다. 최근 머신러닝/심층 신경망 기술의 발전으로 심층 신경망 기반의 인지 모델이 사용됨에 따라, 인지 알고리즘의 올바른 학습과 이를 위한 양질의 학습데이터가 필수적으로 요구된다. 그러나 자율주행에 발생할 수 있는 모든 상황을 데이터를 수집하는 것은 현실적인 어려움이 많다. 해외와 국내의 교통 환경의 차이로 인지 모델의 성능이 저하되기도 하며, 센서가 정상동작을 못하는 악천우에 대한 데이터는 수집이 어려우며 질적인 부분을 보장하지 못한다. 때문에, 실제 도로가 아닌 시뮬레이터 내 가상 도로 환경을 구축하여 합성 데이터를 수집하는 접근법이 필요하다. 본 논문에서는 국내 실정에 맞게 국내 도로 상황을 모사한 시뮬레이터 환경 안에 날씨와 조도, 차량의 종류와 대수, 센서의 위치를 다양화하여 학습데이터를 수집하였고, 보다 더 좋은 성능을 위해 적대적 생성 모델을 활용하여 이미지의 도메인을 보다 실사에 가깝게 바꾸고 다양화 하였다. 그리고 위 데이터로 학습한 인지 모델을 실제 도로 환경에서 수집한 시험 데이터에 성능 평가를 진행하여, 실제 환경 데이터만으로 학습한 모델과 비슷한 성능을 내는 것을 보였다.
블랙 아이스는 인지하기가 매우 어렵고 도로 노면의 마찰력이 감소하여 자동차 사고를 유발한다. 도로 노면의 블랙아이스 방지를 위한 다양한 연구가 수행되었으나, 실시간으로 블랙아이스를 식별하고 운전자에게 경고하는 시스템에 대한 연구는 매우 미흡한 실정이다. 본 논문에서는 아스팔트 도로 노면의 상태를 실시간적으로 식별하기 위해 이미지기반 분석 시스템을 개발하였다. 이를 위해 각 아스팔트 도로 노면 이미지에 대해 데이터 세트를 구축한 다음 딥러닝을 통해 노면의 상태를 건조, 젖음, 블랙아이스, 눈 노면 상태로 식별하였다. 또한, 이미지 분석결과와 더불어 도로 노면 상태의 최종판별을 위해 실제 노면에서 측정된 온도와 습도 데이터를 사용하였다. 도로 노면의 특성이 블랙아이스로 판정이 나면, 도로에 설치된 염수 분사장치가 자동으로 작동하도록 하였다. 본 연구에서 개발된 아스팔트 콘크리트 포장에 대한 노면 상태 식별 시스템과 블랙아이스 자동 예방 시스템은 운전자의 안전운행을 보장하고 교통사고 발생률을 낮출 수 있을 것으로 기대된다.
첨단 운전자 보조 시스템(advanced driver assistance system)의 주요 기능 중 하나인 주행 가능 영역 검출은 차량이 안전하게 주행할 수 있는 영역을 검출하는 것을 의미한다. 주행 가능 영역 검출은 운전자의 안전과 밀접한 연관이 있으며 실시간 동작과 높은 정확도 성능을 요구한다. 이러한 조건들을 충족하기 위해, 영상의 각 행에서 도로 시차 값을 계산하여 주행 가능 영역을 검출하는 V-시차 기반 방법이 폭넓게 사용된다. 그러나 V-시차 기반 방법은 시차 값이 정확하지 않거나 객체의 시차 값이 도로의 시차 값과 동일한 경우, 도로가 아닌 영역을 도로로 오검출할 수 있다. 또한, 고속도로 및 시골길과 같이, 초목을 포함한 도로 환경에서 초목의 시차는 도로의 시차 특성과 매우 유사하기 때문에 초목 영역이 주행 가능 영역으로 오검출될 수 있다. 이에 본 논문에서는 V-시차의 특성으로 인한 오검출 횟수를 감소시킴으로써 초목 영역을 포함한 도로 환경에서 높은 정확도를 갖는 주행 가능 영역 검출 방법 및 하드웨어 구조를 제안한다. 제안하는 방법의 성능을 평가하기 위해 KITTI road dataset의 289장 영상을 사용하였을 때, 제안하는 방법은 90.12%의 정확도와 97.96%의 재현율을 보인다. 또한, 제안하는 하드웨어 구조를 FPGA 플랫폼에 구현하였을 때, 제안하는 하드웨어 구조는 8925개의 slice registers와 7066개의 slice LUTs를 사용한다.
In this study, based on numerical map GIS-T Dataset build and by using ArcGIS Network Analysis emergency vehicle's reach time were analyzed. AutoCad using 1: 50,000 based on roads and hospitals of numerical map were creating a Polyline and Point and Network Dataset made using ArcCatalog. ArcGIS Analysis setting the interval for the period reached 3 minutes, 5 minutes, 15 minutes was set and then U-Turn was set to not allow because U-turn takes a long time to calculate and does not happen often on the real road. Intersection of the passage of time, considering that the emergency vehicles were set to 3 seconds. To expand by taking advantage of this facility on Vulnerable area will be used as base material. If we focus on analyzing the emergency activity to convert little data, To prepare for disaster and disaster will be able to use the materials.
Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
ETRI Journal
/
제45권5호
/
pp.847-861
/
2023
Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.
International Journal of Computer Science & Network Security
/
제24권8호
/
pp.14-20
/
2024
Traffic sign recognition is an essential feature of intelligent transportation systems and Advanced Driver Assistance Systems (ADAS), which are necessary for improving road safety and advancing the development of autonomous cars. This research investigates the incorporation of the YOLOv9 model into traffic sign recognition systems, utilizing its sophisticated functionalities such as Programmable Gradient Information (PGI) and Generalized Efficient Layer Aggregation Network (GELAN) to tackle enduring difficulties in object detection. We employed a publically accessible dataset obtained from Roboflow, which consisted of 3130 images classified into five distinct categories: speed_40, speed_60, stop, green, and red. The dataset was separated into training (68%), validation (21%), and testing (12%) subsets in a methodical manner to ensure a thorough examination. Our comprehensive trials have shown that YOLOv9 obtains a mean Average Precision (mAP@0.5) of 0.959, suggesting exceptional precision and recall for the majority of traffic sign classes. However, there is still potential for improvement specifically in the red traffic sign class. An analysis was conducted on the distribution of instances among different traffic sign categories and the differences in size within the dataset. This analysis aimed to guarantee that the model would perform well in real-world circumstances. The findings validate that YOLOv9 substantially improves the precision and dependability of traffic sign identification, establishing it as a dependable option for implementation in intelligent transportation systems and ADAS. The incorporation of YOLOv9 in real-world traffic sign recognition and classification tasks demonstrates its promise in making roadways safer and more efficient.
본 연구에서는 주행 차량의 실시간 연료소모량을 예측할 수 있는 머신러닝 기법을 제안하고 그 특성을 분석하였다. 머신러닝 학습을 위해 실도로 주행을 실시하여 주행 속도, 가속도, 도로 구배와 함께 연료소모량을 측정하였다. 특성 데이터로 속도, 가속도, 도로구배를, 타깃으로 연료소모량을 지정하여 다양한 머신러닝 모델을 학습시켰다. 회귀법에 해당하는 K-최근접이웃회귀 및 선형회귀와 함께, 분류법에 해당하는 K-최근접이웃분류, 로지스틱회귀, 결정트리, 랜덤포레스트, 그래디언부스팅을 사용하였다. 실시간 연료소모량에 대한 예측 정확도는 0.5 ~ 0.6 수준으로 전반적으로 낮았고, 회귀법의 경우 분류법보다 정확도가 떨어졌다. 총연료소모량에 대한 예측 오차는 0.2 ~ 2.0% 수준으로 상당히 정확했고, 분류법보다 회귀법의 오차가 더 낮았다. 이는 예측 정확도의 기준으로 결정계수(R2)를 사용했기 때문인데, 이 값이 작을수록 타깃의 평균 부근에 예측치가 좁게 분포하기 때문이다. 따라서 실시간 연료소모량 예측에는 분류법이, 총연료소모량 예측에는 회귀법이 적합하다고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.