• Title/Summary/Keyword: Real plant

Search Result 1,272, Processing Time 0.03 seconds

A Study on Plant Training System Platform for the Collaboration Training between Operator and Field Workers (운전자와 현장조업자의 협동훈련을 위한 플랜트 훈련시스템 플랫폼 연구)

  • Lee, Gyungchang;Chung, Kyo-il;Mun, Duhwan;Youn, Cheong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.420-430
    • /
    • 2015
  • Operator Training Simulators (OTSs) provide macroscopic training environment for plant operation. They are equipped with simulation systems for the emulation of remote monitoring and controlling operations. OTSs typically provide 2D block diagram-based graphic user interface (GUI) and connect to process simulation tools. However, process modeling for OTSs is a difficult task. Furthermore, conventional OTSs do not provide real plant field information since they are based on 2D human machine interface (HMI). In order to overcome the limitation of OTSs, we propose a new type of plant training system. This system has the capability required for collaborative training between operators and field workers. In addition, the system provides 3D virtual training environment such that field workers feel like they are in real plant site. For this, we designed system architecture and developed essential functions for the system. For the verification of the proposed system design, we implemented a prototype training system and performed experiments of collaborative training between one operator and two field workers with the prototype system.

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

A Study on the Analysis of Performance for a Real-time Distributed Control System with Reliability (신뢰성 있는 실시간 분산제어 시스템의 성능분석에 관한 연구)

  • Kim, Nae-Jin;Park, In-Kap
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.270-277
    • /
    • 1998
  • As the network technologies advance, the control systems progress from a centralized architecture to a distributed one. However, these control systems were designed mostly based on the general-purpose operating systems(OS) and have many problems for assurance of a real-time property required for plant processing fields. Therefore, the control systems far a plant process upon real-time OS hare been increased gradually. In this paper, the real-time OS emphasizes on the realization of real-time processing capability, reliability of real-time response, and multi-processing functionality which are prerequisites for a distributed control system. And on the basis of this OS, the number of executable loop and logic, the functions of main plant processing, was analyzed and its validity was also evaluated. The system in this paper was designed not to effect on processing data while online, and the time spent on switching was measured.

  • PDF

A study on the real time control of flexible manufacturing system using colored and timed Petri Nets (페트리네트를 이용한 유연생산시스템의 실시간 제어에 관한 연구)

  • 노상도;김기범;김종원;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1099-1104
    • /
    • 1993
  • The real time control system for FMS(Flexible Manufacturing System) is implemented at this paper. To achieve this goal, the Colored and Timed Petri-Net model is constructed and used to simulate the real time operation of FMS. Using the Colored and Timed Petri-Net model, evaluating any kind of FMS plant is possible. On-line shceduler, intelligent dispatcher, real time monitor and the simulation model of shop floor are contructed using LAN communication, relational database system in this paper. Finally, this real time control system is applied to the FMS/CIM center at Seoul National University.

  • PDF

Developing peptide nucleic acid based multiplex real time RT-PCR to detect Foot-and-Mouth-Disease virus Serotype A (구제역바이러스 혈청형 A 검출을 위한 peptide nucleic acid (PNA)기반 multiplex real-time RT-PCR 개발)

  • Lee, Jin-Woo;Lee, Sumee;Nah, Jin-Ju;Ryoo, Soyoon;Shin, Moon-Kyun;Kim, Taeseong;Ha, Byeong-Suk;Lee, Hyun-Ji;Park, Hye-Jin;Lee, Jeong-Won;Jung, Semin;Wee, Sung-Hwan;Ku, Bok-Kyung
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • There have been a total tenth FMD outbreaks in Korea and for the first time, type O and A were detected simultaneously in 2017, which led to difficulties in FMD control. For the effective prevention of FMD, the importance of discrimination of serotypes became greater. Therefore, the most urgent requirement in case of FMD outbreak is differential diagnosis of serotypes. In this study, we developed a PNA probe-mediated multiplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using the peptide nucleic acid (PNA) probe, which is known to be stable to nucleotide mutation and that could specifically detect the all FMDV serotype A, FMDVA Yeoncheon strain which was occurred in Korea in 2017, and FMDV A viruses shown 96% similarity with FMDVA/Yeoncheon strain, at the same time. Therefore, It is believed that the newly introduced FMDVA will be effectively diagnosed using the PNA probe multiplex RT-PCR developed in this study, and ultimately contribute to the prevention of FMD.

Networked Control System Using RTT Measurement over USN (RTT 측정을 이용하는 USN 기반 Networked Control System)

  • Yi, Hyun-Chul;Kim, Yu-Jong;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1040-1044
    • /
    • 2012
  • We design a NCS (Networked Control System) where the communication between sensors and controllers takes place over a USN (Ubiquitous Sensor Network). In order to measure time delays between sensors and controllers in real time, we design an algorithm to measure RTT (Round Trip Time) between USN nodes, and implement it into TinyOS of USN. By using the measured time delays, we construct the Smith predictor to compensate the time delays between sensors and controllers in real-time. For the real time experiment, we simulate the dynamic plant model, controller, and USN interface using Real-Time Windows Target provided in MATLAB. The USN interface in the Simulink model consists of serial ports, which connect the plant output and controller with USN nodes. The experiment results show that the time delays between sensors and controllers are precisely measured in real time; the Smith predictor appropriately compensates the time delays; and the stability is achieved in the closed-loop of the NCS.

A Basic Study of Fuel 2-staging Y-jet Atomizer to Reduce NOx in Liquid Fuel Burner (액체 연료용 버너에서 NOx 저감을 위한 연료2단 분사 Y-jet 노즐에 관한 기초연구)

  • Song, Si-Hong;Lee, Gi-Pung;Kim, Hyeok-Je;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1616-1623
    • /
    • 2001
  • A basic experimental study has been carried out to find out the design parameters of fuel 2-staging atomizers in order to reduce nitrogen oxides(NOx) rate emitted from the steam boilers used the liquid fuel. The heavy fuel oil(B-Coil) and fuel 2-staging Y-jet twin-fluid atomizers were adopted in this study. The results of this paper were obtained from the real as well as the model scale atomizers. In the case of model atomizers test, NOx reduction rate was strongly dependent on the staged fuel rate, but it was weakly dependent on the injection hole arrangement and air swirl conditions. The real scale atomizers was designed and manufactured on the base of these test results, and those was mounted and operated in the real boiler generates 185 ton steam per an hour. The reduction rate of the model and real plant was reached 10∼30% of base NOx by atomizers. but dust was sharply increased in the low O$_2$combustion region of the real plant.

Real Option Analysis for Medium-scale CHP Plant Investment with Volatile Electricity Prices (실물옵션을 이용한 소형열병합발전의 경제성 평가 : 전력가격 변동성을 고려하여)

  • Park, Hojeong;Jang, Chulho
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.763-779
    • /
    • 2007
  • The combined heat-and-power (CHP) plant is recently suggested as an effective resolution in response to recent rising oil prices and the Kyoto Protocol. This research provides a model for economic appraisal to evaluate CHP investment. Real option model is developed to incorporate a case where the investment is irreversible and underlying revenue is stochastic. The analysis shows that power plant capacity more than 40 Gcal makes CHP investment profitable while the results may vary 10 modest level with respect to investment cost, heat sales price and discount rate.

  • PDF

Development of a Quantitative Real-time Nucleic Acid Sequence based Amplification (NASBA) Assay for Early Detection of Apple scar skin viroid

  • Heo, Seong;Kim, Hyun Ran;Lee, Hee Jae
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • An assay for detecting Apple scar skin viroid (ASSVd) was developed based on nucleic acid sequence based amplification (NASBA) in combination with realtime detection during the amplification process using molecular beacon. The ASSVd specific primers for amplification of the viroid RNA and molecular beacon for detecting the viroid were designed based on highly conserved regions of several ASSVd sequences including Korean isolate. The assay had a detection range of $1{\times}10^4$ to $1{\times}10^{12}$ ASSVd RNA $copies/{\mu}l$ with reproducibility and precision. Following the construction of standard curves based on time to positive (TTP) value for the serial dilutions ranging from $1{\times}10^7$ to $1{\times}10^{12}$ copies of the recombinant plasmid, a standard regression line was constructed by plotting the TTP values versus the logarithm of the starting ASSVd RNA copy number of 10-fold dilutions each. Compared to the established RT-PCR methods, our method was more sensitive for detecting ASSVd. The real-time quantitative NASBA method will be fast, sensitive, and reliable for routine diagnosis and selection of viroid-free stock materials. Furthermore, real-time quantitative NASBA may be especially useful for detecting low levels in apple trees with early viroid-infection stage and for monitoring the influence on tree growth.

Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing

  • Seong, Hoon Je;Park, Hye-Jee;Hong, Eunji;Lee, Sung Chul;Sul, Woo Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.500-507
    • /
    • 2016
  • Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified $N^6$-methyladenine (6mA) and $N^4$-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.