RTP (real-time transport protocol)는 인터넷상에서 실시간 멀티미디어 트래픽을 전송하기 위한 유력한 프로토콜로서 간주되고 있다. 망내에서 실시간 멀티미디어 트래픽을 제어하고 관리하기 위하여는 망 관리자가 망을 통하여 전달되는 실시간 멀티미디어 트래픽들을 감시하고 분석해내는 것이 필요하지만, 기존의 트래픽 분석 도구들은 RTP 패킷들을 비실시간 뿐만 아니라 실시간으로도 정확히 분류, 분석해 내지 못하고 있다. 본 논문에서는 인터넷에서 RTP를 사용하는 실시간 멀티미디어 트래픽을 실시간으로 분류해 내기 위한 방법을 제안한다. 한국전산원의 국제망 연동을 위한 게이트웨이 라우터에서 직접 수집한 데이터를 사용하여, 제안 방법의 정확성과 신속성을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제4권5호
/
pp.859-876
/
2010
In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권7호
/
pp.2261-2280
/
2014
Recently, network traffic has become more complex and diverse due to the emergence of new applications and services. Therefore, the importance of application-level traffic classification is increasing rapidly, and it has become a very popular research area. Although a lot of methods for traffic classification have been introduced in literature, they have some limitations to achieve an acceptable level of performance in real-time application-level traffic classification. In this paper, we propose a novel application-level traffic classification method using payload size sequence (PSS) signature. The proposed method generates unique PSS signatures for each application using packet order, direction and payload size of the first N packets in a flow, and uses them to classify application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates, over 99.97%. Furthermore, the method can also classify application traffic that uses the same application protocol or is encrypted.
인터넷에 기반한 응용 프로그램의 종류와 네트워크 대역폭이 증가하면서 페이로드 시그니처 기반 트래픽 분류 시스템에서 처리하는 데이터의 양이 급격하게 증가하고 있다. 대용량 트래픽 데이터에 대한 처리 속도를 향상시키기 위한 방법으로 다양한 패턴 매칭 알고리즘이 제안되고 있다. 하지만 비약적으로 늘어나는 시그니처의 수와 트래픽 양에 비해 패턴 매칭 알고리즘의 성능 향상 속도는 한정적이고, 입력데이터의 특성에 의존적인 성능을 나타낸다. 따라서 본 논문에서는 분류 시스템의 입력 데이터로 제공되는 트래픽 데이터와 시그니처의 탐색 공간을 최적화할 수 있는 분류, 시스템 구조를 제안한다. 또한 제안하는 분류 시스템을 학내 망에서 발생하는 대용량의 트래픽에 실시간으로 적용하여 그 타당성을 증명한다.
This article discusses a capacity planning method in QoS-guaranteed IP networks such as BcN (Broadband convergence Network). Since IP based networks have been developed to transport best-effort data traffic, the introduction of multi-service component in BcN requires fundamental modifications in capacity planning and network dimensioning. In this article, we present the key issues of the capacity planning in multi-service IP networks. To provide a foundation for network dimensioning procedure, we describe a systematic approach for classification and modeling of BcN traffic based on the QoS requirements of BcN services. We propose a capacity planning framework considering data traffic and real-time streaming traffic separately. The multi-service Erlang model, an extension of the conventional Erlang B loss model, is introduced to determine required link capacity for the call based real-time streaming traffic. The application of multi-service Erlang model can provide significant improvement in network planning due to sharing of network bandwidth among the different services.
Ahmed, Sohail;Asim, Malik Muhammad;Mehmood, Nadeem Qaisar;Ali, Mubashir;Shahzaad, Babar
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.473-494
/
2020
To provide a guaranteed Quality of Service (QoS) to real-time traffic in High-Speed Downlink Packet Access (HSDPA) core network, we proposed an enhanced mechanism. For an enhanced QoS, a Class-Based Low Latency Fair Queueing (CBLLFQ) packet scheduling algorithm is introduced in this work. Packet classification, metering, queuing, and scheduling using differentiated services (DiffServ) environment was the points in focus. To classify different types of real-time voice and multimedia traffic, the QoS provisioning mechanisms use different DiffServ code points (DSCP).The proposed algorithm is based on traffic classes which efficiently require the guarantee of services and specified level of fairness. In CBLLFQ, a mapping criterion and an efficient queuing mechanism for voice, video and other traffic in separate queues are used. It is proved, that the algorithm enhances the throughput and fairness along with a reduction in the delay and packet loss factors for smooth and worst traffic conditions. The results calculated through simulation show that the proposed calculations meet the QoS prerequisites efficiently.
본 논문에서는 교통 영상에서 실시간 교통 정보를 산출하는 새로운 기법을 소개한다. 각 차선의 검지 영역은 통계적 특징과 형상적 특징을 이용하여 도로, 차량, 그리고 그림자 영역으로 분류한다. 한 프레임에서의 오류는 연속된 프레임에서의 차량 영역의 상관적 특징을 이용하여 시공간 영상에서 교정된다. 국부 검지 영역만을 처리하므로 전용의 병렬 처리기 없이도 초당 30 프레임 이상의 실시간 처리가 가능하며 기상조건, 그림자, 교통량의 변화에도 강건한 성능을 보장할 수 있다.
최근 인터넷 사용자의 증가와 고속 네트워크 망을 통한 네트워크 트래픽의 급증으로 효율적인 네트워크 트래픽 관리의 필요성이 더욱 커졌다. 효율적인 트래픽 관리를 위해서는 응용 프로그램 별 트래픽 분류의 연구가 선행되어야 하며 이미 많은 기존 논문에서 응용레벨 트래픽 분류에 대한 다양한 알고리즘을 제시하고 있다. 하지만 P2P기반의 Skype응용에 대해서는 분석율이 떨어져 이에 대한 연구가 더 필요한 실정이다. 본 논문에서는 payload 시그니쳐 기반 분석, 기계학습 기반 분석 등 기존의 방법론에 의존하지 않고 Skype응용의 트래픽 특성을 분석해 사용자들의 {IP, port} 리스트를 추출하고 이를 이용해 네트워크 내에 발생하는 Skype응용 프로그램의 트래픽을 정확하게 탐지하는 실시간 탐지 알고리즘을 제안한다 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 검증하였다.
IEIE Transactions on Smart Processing and Computing
/
제6권3호
/
pp.183-192
/
2017
k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권12호
/
pp.4489-4501
/
2014
We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.