• 제목/요약/키워드: Real Time Traffic Classification

검색결과 47건 처리시간 0.024초

인터넷상에서 트래픽 관리를 위한 효율적인 RTP 패킷 분류 방법 (An Efficient Online RTP Packet Classification Method for Traffic Management In the Internet)

  • 노병희
    • 인터넷정보학회논문지
    • /
    • 제5권5호
    • /
    • pp.39-48
    • /
    • 2004
  • RTP (real-time transport protocol)는 인터넷상에서 실시간 멀티미디어 트래픽을 전송하기 위한 유력한 프로토콜로서 간주되고 있다. 망내에서 실시간 멀티미디어 트래픽을 제어하고 관리하기 위하여는 망 관리자가 망을 통하여 전달되는 실시간 멀티미디어 트래픽들을 감시하고 분석해내는 것이 필요하지만, 기존의 트래픽 분석 도구들은 RTP 패킷들을 비실시간 뿐만 아니라 실시간으로도 정확히 분류, 분석해 내지 못하고 있다. 본 논문에서는 인터넷에서 RTP를 사용하는 실시간 멀티미디어 트래픽을 실시간으로 분류해 내기 위한 방법을 제안한다. 한국전산원의 국제망 연동을 위한 게이트웨이 라우터에서 직접 수집한 데이터를 사용하여, 제안 방법의 정확성과 신속성을 보였다.

  • PDF

Real-time Classification of Internet Application Traffic using a Hierarchical Multi-class SVM

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.859-876
    • /
    • 2010
  • In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.

Application Traffic Classification using PSS Signature

  • Ham, Jae-Hyun;An, Hyun-Min;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2261-2280
    • /
    • 2014
  • Recently, network traffic has become more complex and diverse due to the emergence of new applications and services. Therefore, the importance of application-level traffic classification is increasing rapidly, and it has become a very popular research area. Although a lot of methods for traffic classification have been introduced in literature, they have some limitations to achieve an acceptable level of performance in real-time application-level traffic classification. In this paper, we propose a novel application-level traffic classification method using payload size sequence (PSS) signature. The proposed method generates unique PSS signatures for each application using packet order, direction and payload size of the first N packets in a flow, and uses them to classify application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates, over 99.97%. Furthermore, the method can also classify application traffic that uses the same application protocol or is encrypted.

탐색공간 최적화를 통한 시그니쳐기반 트래픽 분석 시스템 성능향상 (Performance Improvement of Signature-based Traffic Classification System by Optimizing the Search Space)

  • 박준상;윤성호;김명섭
    • 인터넷정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.89-99
    • /
    • 2011
  • 인터넷에 기반한 응용 프로그램의 종류와 네트워크 대역폭이 증가하면서 페이로드 시그니처 기반 트래픽 분류 시스템에서 처리하는 데이터의 양이 급격하게 증가하고 있다. 대용량 트래픽 데이터에 대한 처리 속도를 향상시키기 위한 방법으로 다양한 패턴 매칭 알고리즘이 제안되고 있다. 하지만 비약적으로 늘어나는 시그니처의 수와 트래픽 양에 비해 패턴 매칭 알고리즘의 성능 향상 속도는 한정적이고, 입력데이터의 특성에 의존적인 성능을 나타낸다. 따라서 본 논문에서는 분류 시스템의 입력 데이터로 제공되는 트래픽 데이터와 시그니처의 탐색 공간을 최적화할 수 있는 분류, 시스템 구조를 제안한다. 또한 제안하는 분류 시스템을 학내 망에서 발생하는 대용량의 트래픽에 실시간으로 적용하여 그 타당성을 증명한다.

멀티서비스를 제공하는 IP 네트워크에서의 링크용량 산출 기법 (A Capacity Planning Framework for a QoS-Guaranteed Multi-Service IP network)

  • 최용민
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2007년도 학술대회
    • /
    • pp.327-330
    • /
    • 2007
  • This article discusses a capacity planning method in QoS-guaranteed IP networks such as BcN (Broadband convergence Network). Since IP based networks have been developed to transport best-effort data traffic, the introduction of multi-service component in BcN requires fundamental modifications in capacity planning and network dimensioning. In this article, we present the key issues of the capacity planning in multi-service IP networks. To provide a foundation for network dimensioning procedure, we describe a systematic approach for classification and modeling of BcN traffic based on the QoS requirements of BcN services. We propose a capacity planning framework considering data traffic and real-time streaming traffic separately. The multi-service Erlang model, an extension of the conventional Erlang B loss model, is introduced to determine required link capacity for the call based real-time streaming traffic. The application of multi-service Erlang model can provide significant improvement in network planning due to sharing of network bandwidth among the different services.

  • PDF

Implementation of Class-Based Low Latency Fair Queueing (CBLLFQ) Packet Scheduling Algorithm for HSDPA Core Network

  • Ahmed, Sohail;Asim, Malik Muhammad;Mehmood, Nadeem Qaisar;Ali, Mubashir;Shahzaad, Babar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.473-494
    • /
    • 2020
  • To provide a guaranteed Quality of Service (QoS) to real-time traffic in High-Speed Downlink Packet Access (HSDPA) core network, we proposed an enhanced mechanism. For an enhanced QoS, a Class-Based Low Latency Fair Queueing (CBLLFQ) packet scheduling algorithm is introduced in this work. Packet classification, metering, queuing, and scheduling using differentiated services (DiffServ) environment was the points in focus. To classify different types of real-time voice and multimedia traffic, the QoS provisioning mechanisms use different DiffServ code points (DSCP).The proposed algorithm is based on traffic classes which efficiently require the guarantee of services and specified level of fairness. In CBLLFQ, a mapping criterion and an efficient queuing mechanism for voice, video and other traffic in separate queues are used. It is proved, that the algorithm enhances the throughput and fairness along with a reduction in the delay and packet loss factors for smooth and worst traffic conditions. The results calculated through simulation show that the proposed calculations meet the QoS prerequisites efficiently.

시공간 영상 분석에 의한 강건한 교통 모니터링 시스템 (Robust Traffic Monitoring System by Spatio-Temporal Image Analysis)

  • 이대호;박영태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1534-1542
    • /
    • 2004
  • 본 논문에서는 교통 영상에서 실시간 교통 정보를 산출하는 새로운 기법을 소개한다. 각 차선의 검지 영역은 통계적 특징과 형상적 특징을 이용하여 도로, 차량, 그리고 그림자 영역으로 분류한다. 한 프레임에서의 오류는 연속된 프레임에서의 차량 영역의 상관적 특징을 이용하여 시공간 영상에서 교정된다. 국부 검지 영역만을 처리하므로 전용의 병렬 처리기 없이도 초당 30 프레임 이상의 실시간 처리가 가능하며 기상조건, 그림자, 교통량의 변화에도 강건한 성능을 보장할 수 있다.

동작형태 분석을 통한 Skype 응용 트래픽의 실시간 탐지 방법 (Real-time Identification of Skype Application Traffic using Behavior Analysis)

  • 이상우;이현신;최미정;김명섭
    • 한국통신학회논문지
    • /
    • 제36권2B호
    • /
    • pp.131-140
    • /
    • 2011
  • 최근 인터넷 사용자의 증가와 고속 네트워크 망을 통한 네트워크 트래픽의 급증으로 효율적인 네트워크 트래픽 관리의 필요성이 더욱 커졌다. 효율적인 트래픽 관리를 위해서는 응용 프로그램 별 트래픽 분류의 연구가 선행되어야 하며 이미 많은 기존 논문에서 응용레벨 트래픽 분류에 대한 다양한 알고리즘을 제시하고 있다. 하지만 P2P기반의 Skype응용에 대해서는 분석율이 떨어져 이에 대한 연구가 더 필요한 실정이다. 본 논문에서는 payload 시그니쳐 기반 분석, 기계학습 기반 분석 등 기존의 방법론에 의존하지 않고 Skype응용의 트래픽 특성을 분석해 사용자들의 {IP, port} 리스트를 추출하고 이를 이용해 네트워크 내에 발생하는 Skype응용 프로그램의 트래픽을 정확하게 탐지하는 실시간 탐지 알고리즘을 제안한다 제안된 방법론은 학내 네트워크에 적용하여 그 타당성을 검증하였다.

Plurality Rule-based Density and Correlation Coefficient-based Clustering for K-NN

  • Aung, Swe Swe;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.183-192
    • /
    • 2017
  • k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.