• Title/Summary/Keyword: Real Time Object Detection

Search Result 535, Processing Time 0.023 seconds

Deep Learning Model Selection Platform for Object Detection (사물인식을 위한 딥러닝 모델 선정 플랫폼)

  • Lee, Hansol;Kim, Younggwan;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, object recognition technology using computer vision has attracted attention as a technology to replace sensor-based object recognition technology. It is often difficult to commercialize sensor-based object recognition technology because such approach requires an expensive sensor. On the other hand, object recognition technology using computer vision may replace sensors with inexpensive cameras. Moreover, Real-time recognition is viable due to the growth of CNN, which is actively introduced into other fields such as IoT and autonomous vehicles. Because object recognition model applications demand expert knowledge on deep learning to select and learn the model, such method, however, is challenging for non-experts to use it. Therefore, in this paper, we analyze the structure of deep - learning - based object recognition models, and propose a platform that can automatically select a deep - running object recognition model based on a user 's desired condition. We also present the reason we need to select statistics-based object recognition model through conducted experiments on different models.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.

An Introduction to Numerical Modeling of Infrared Array-Based Object Detectors for Free-form Surface Installations

  • Joong Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.255-264
    • /
    • 2024
  • Infrared-based scanners are utilized as a promising method for detecting objects that contact on a surface. In this system, infrared transmitters and receivers are positioned at opposite ends of the plane, facing each other. Traditionally, this system employed a one-to-one scanning method, where a single infrared transmitter emits a light signal that is detected by a corresponding receiver on the opposite side. While this method offers advantages such as fast response times and system simplicity, it is limited by its inability to detect multiple objects simultaneously. To address this limitation, recent applications have adopted the one-to-many scanning. In this scanning method, a single infrared transmitter emits a light signal that is detected by multiple receivers on the opposite side. The results are then read in real-time to determine the position and size of the object. With the recent advancements in computing power, the response speed and accuracy of one-to-many scanning have significantly improved. However, in most cases, this method has been limited to object detection on simple planes, and there is no analytical method available to support performance prediction when considering various sensor installation configurations with various form-factors. In this study, we mathematically modeled an infrared sensor array system to predict the performance of various sensor configurations installed on two-dimensional planes or curved surfaces. Additionally, we assess the critical effect of inevitable positional errors (including orientation mismatches) on the system's performance. The unique approach introduced in this paper will provide highly reliable quantitative predictions, aiding in the design of sensor network form factors tailored for various applications in the future.

Alternative Tracing Method for Moving Object Using Reference Template in Real-time Image - Focusing on Parking Management System (참조 템플릿 기반 실시간 이동체 영상을 이용한 대안적 탐지 방안 - 주차관리시스템을 대상으로)

  • Joo, Yong Jin;Kang, Lee Seul;Hahm, Chang Hahk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2014
  • As the number of vehicles has been sharply increases, the significance of safety and effective operation issues in the parking lot is being emphasized, which takes a part of the transportation system. Recently, there have been several studies for the parking management by detecting moving object, however, recognizing numbers of fast-moving vehicles simultaneously in the picture is still a challenging problem. The parking lot in public area, or large-sized buildings has clear parking section, whereas the sensor system is configured to monitor a plurality of parking spaces. Therefore, by considering those parking lots, we suggested to develop the real-time parking availability information system by applying the real-time image processing techniques. with the help of template matching. Following the study, we wanted to provide the alternative method for parking management system through the reference template makers by recognizing movements of parked vehicles with the size and shape, regardless of direct detecting of driving movements. In addition, we evaluated the applicability and performances of the information system, presented in this study, and implemented a prototype system to simulate the parking statuses of each floor. In fat, it was possible to manage and analyze statistics about the total number of parking spaces and the number of vehicles parked through real-time video flames. We expected that the result of the study will be advanced, following the user-friendliness and cost reduction in operating parking management system and giving information by efficient analysis of parking situation.

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

Quality Enhancement of 3D Volumetric Contents Based on 6DoF for 5G Telepresence Service

  • Byung-Seo Park;Woosuk Kim;Jin-Kyum Kim;Dong-Wook Kim;Young-Ho Seo
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.729-750
    • /
    • 2022
  • In general, the importance of 6DoF (degree of freedom) 3D (dimension) volumetric contents technology is emerging in 5G (generation) telepresence service, Web-based (WebGL) graphics, computer vision, robotics, and next-generation augmented reality. Since it is possible to acquire RGB images and depth images in real-time through depth sensors that use various depth acquisition methods such as time of flight (ToF) and lidar, many changes have been made in object detection, tracking, and recognition research. In this paper, we propose a method to improve the quality of 3D models for 5G telepresence by processing images acquired through depth and RGB cameras on a multi-view camera system. In this paper, the quality is improved in two major ways. The first concerns the shape of the 3D model. A method of removing noise outside the object by applying a mask obtained from a color image and a combined filtering operation to obtain the difference in depth information between pixels inside the object were proposed. Second, we propose an illumination compensation method for images acquired through a multi-view camera system for photo-realistic 3D model generation. It is assumed that the three-dimensional volumetric shooting is done indoors, and the location and intensity of illumination according to time are constant. Since the multi-view camera uses a total of 8 pairs and converges toward the center of space, the intensity and angle of light incident on each camera are different even if the illumination is constant. Therefore, all cameras take a color correction chart and use a color optimization function to obtain a color conversion matrix that defines the relationship between the eight acquired images. Using this, the image input from all cameras is corrected based on the color correction chart. It was confirmed that the quality of the 3D model could be improved by effectively removing noise due to the proposed method when acquiring images of a 3D volumetric object using eight cameras. It has been experimentally proven that the color difference between images is reduced.

A study on the fishery detection system for protection of an aquaculture farm (양식어장보호를 위한 어장탐지 시스템개발에 관한 연구)

  • Nam Taek-Kun;Yim Jeong-Bin;Jeong Dae-Deuk;Yang Won-Jae;Ahn Young-sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.97-101
    • /
    • 2004
  • In this paper, we study the fishery detection system for protection of an aquamlture farm. The FDS(fishery detection system) will be recognize a robbing vessel with real time and variance the position of aquaculture farm. We try to develop the F-AIS(Fishery Automatic Identification System) which am be detect approaching object to aquaculture farm and distinguish our fishing boot from thief vessel. The F-AIS with low price and wideband responsibility am be adopt to the FDS, i. e. the identification for a small-sized fishing boots.

  • PDF

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

Object Detection Method on Vision Robot using Sensor Fusion (센서 융합을 이용한 이동 로봇의 물체 검출 방법)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.249-254
    • /
    • 2007
  • A mobile robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. We focus on how to detect a object region well using image processing algorithm because it gives robots the ability of working for human. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. Shape information and signature algorithm are used to segment the objects from background regardless of shape changes. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.