• Title/Summary/Keyword: Real Time Digital Simulation

Search Result 361, Processing Time 0.029 seconds

REAL-TIME 3D SIMULATION INFRASTRUCTURE FOR PRACTICAL APPLICATION OF HIGH-RESOLUTION SATELLITE IMAGERY

  • Yoo, Byoung-Hyun;Brotzman, Don;Han, Soon-Hung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.155-158
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain, and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

  • PDF

Real-Time Simulation of Thin Rod

  • Choi, Min Gyu;Song, Oh-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.849-859
    • /
    • 2013
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as one-dimensional structures. Development of a real-time physical model that can produce visually convincing animation of thin rods has been a challenging problem in computer graphics. We adopt continuum mechanics to formulate the governing equation, and develop a modal warping technique for rods to integrate the governing equation in real-time; This is a novel extension of the previous modal warping techniques developed for solids and shells. Experimental results show that the proposed method runs in real-time even for large meshes and it can simulate large bending and/or twisting deformations.

Real Weather Condition Based Simulation of Stand-Alone Wind Power Generation Systems Using RTDS

  • Park, Min-Won;Han, Sang-Geun;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.146-152
    • /
    • 2004
  • Cost effective simulation schemes for Wind Power Generation Systems (WPGS) considering wind turbine types, generators and load capacities have been strongly investigated by researchers. As an alternative, a true weather condition based simulation method using a real-time digital simulator (RTDS) is experimented in this paper for the online real-time simulation of the WPGS. A stand-alone WPGS is, especially, simulated using the Simulation method for WPGS using Real Weather conditions (SWRW) in this work. The characteristic equation of a wind turbine is implemented in the RTDS and a RTDS model component that can be used to represent any type of wind turbine in the simulations is also established. The actual data related to weather conditions are interfaced directly to the RTDS for the purpose of online real-time simulation of the stand-alone WPGS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme. The results also signify that the cost effective verification of efficiency and stability for the WPGS is possible by the proposed real-time simulation method.

A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed (실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구)

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

Development of a real-time simulation algorithm for the application of the HTS tape (고온초전도 선의 전력 응용을 위한 실시간 시뮬레이션 알고리즘 개발)

  • Kang, Jin-Ju;Kim, Jae-Ho;Je, Hyang-Ho;Cho, Jeon-Wook;Sim, Ki-Deok;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.260-261
    • /
    • 2006
  • This paper describes a real time digital simulation method for the application of HTS tape to power devices. At present, in order to extend the power capacity of some area which has a serious problem of power quality, especially metropolitan complex city. there are so many problems such as ROW for cable line routes, space for downtown substations, and the environmental protection, etc. HTS technology is one of the best solutions. Simulation is required for safety before install of HTS power cable, a fabrication model used at the power system simulation. Here, in this paper, authors developed an algorithm connected with HTS by using Real-Time Digital Simulator(RTDS).

  • PDF

A Dynamic Simulation of Distance Relay Using EMTP MODELS (EMTP MODELS를 이용한 거리 계전기 응동 시뮬레이션)

  • 허정용;김철환;여상민
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • Digital technology has advanced very significantly over the years both in terms of software tools and hardware available. It is now applied extensively in many area of electrical engineering including protective relaying in power systems. Digital relays based on digital technology have many advantages over the traditional analog relays. The digital relay is able to do what is difficult or impossible in the analog relays. However, the complex algorithms associated with the digital relays are difficult to test and verify in real time on real power systems. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations have the disadvantage that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used, but the latter needs large space and it is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is constructed and the distance relay is interfaced with a test power system. The distance relays performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including debugging by using EMTP MODELS.

Advanced Real Time Simulation Platform for Control and Protection Studies of LSIS 80kV 60MW Jeju HVDC System

  • Iwa, Kartiwa;Lee, Kyung-Bin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.85-86
    • /
    • 2013
  • This paper describes the physical configuration and features of the advanced control and protection devices, and operation control and monitoring system that are connected to a real time simulator for LS Industrial System 80kV 60 MW Jeju HVDC Pilot Project. Highlight of simulation result are provided to demonstrate the control and protection functionality.

  • PDF

Development of an Impedance Locus Model for a Protective Relay Dynamic Test with a Digital Simulator

  • Kim, Soo-Nam;Lee, Myoung-Soo;Lee, Jae-Gyu;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • This paper presents a method for the development of the impedance locus to test the dynamic characteristics of protective relays. Specifically, using the proposed method, the impedance locus can comprise three impedance points, and the speed of impedance trajectory can be adjusted by frequency deviation. This paper is divided into two main sections. The first section deals with the configuration of impedance locus with voltage magnitude, total impedance magnitude, and impedance angle. The second section discusses the control of the locus speed with the means of the deviation between two frequencies. The proposed method is applied to two machine equivalent systems with offline simulation (i.e., PSCAD) and real-time simulation (i.e., real-time simulation environment) to demonstrate its effectiveness.

Hardware-in-the-loop Simulation Method for a Wind Farm Controller Using Real Time Digital Simulator

  • Kim, Gyeong-Hun;Kim, Jong-Yul;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Eung-Sang;Lee, Ju-Han;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1489-1494
    • /
    • 2014
  • A hardware-in-the-loop simulation (HILS) method for a wind farm controller using a real time digital simulator (RTDS) is presented, and performance of the wind farm controller is analyzed. A 100 MW wind farm which includes 5 MW wind power generation systems (WPGS) is modeled and analyzed in RSCAD/RTDS. The wind farm controller is implemented by using a computer, which is connected to the RTDS through transmission control protocol/internet protocol (TCP/IP). The HILS results show the active power and power factor of the wind farm, which are controlled by the wind farm controller. The proposed HILS method in this paper can be effectively utilized to validate and test a wind farm controller under the environment in practice without a real wind farm.

Design and Implementation of an FPGA-based Real-time Simulator for a Dual Three-Phase Induction Motor Drive

  • Gregor, Raul;Valenzano, Guido;Rodas, Jorge;Rodriguez-Pineiro, Jose;Gregor, Derlis
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.553-563
    • /
    • 2016
  • This paper presents a digital hardware implementation of a real-time simulator for a multiphase drive using a field-programmable gate array (FPGA) device. The simulator was developed with a modular and hierarchical design using very high-speed integrated circuit hardware description language (VHDL). Hence, this simulator is flexible and portable. A state-space representation model suitable for FPGA implementations was proposed for a dual three-phase induction machine (DTPIM). The simulator also models a two-level 12-pulse insulated-gate bipolar transistor (IGBT)-based voltage-source converter (VSC), a pulse-width modulation scheme, and a measurement system. Real-time simulation outputs (stator currents and rotor speed) were validated under steady-state and transient conditions using as reference an experimental test bench based on a DTPIM with 15 kW-rated power. The accuracy of the proposed digital hardware implementation was evaluated according to the simulation and experimental results. Finally, statistical performance parameters were provided to analyze the efficiency of the proposed DTPIM hardware implementation method.