• Title/Summary/Keyword: Real Image

Search Result 5,066, Processing Time 0.029 seconds

Real-Time Tracking of Human Location and Motion using Cameras in a Ubiquitous Smart Home

  • Shin, Dong-Kyoo;Shin, Dong-Il;Nguyen, Quoc Cuong;Park, Se-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.84-95
    • /
    • 2009
  • The ubiquitous smart home is the home of the future, which exploits context information from both the human and the home environment, providing an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. In this paper, we present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. The system uses four network cameras for real-time human tracking. This paper explains the architecture of the real-time human tracker, and proposes an algorithm for predicting human location and motion. To detect human location, three kinds of images are used: $IMAGE_1$ - empty room image, $IMAGE_2$ - image of furniture and home appliances, $IMAGE_3$ - image of $IMAGE_2$ and the human. The real-time human tracker decides which specific furniture or home appliance the human is associated with, via analysis of three images, and predicts human motion using a support vector machine (SVM). The performance experiment of the human's location, which uses three images, lasted an average of 0.037 seconds. The SVM feature of human motion recognition is decided from the pixel number by the array line of the moving object. We evaluated each motion 1,000 times. The average accuracy of all types of motion was 86.5%.

Image Fusion of Lymphoscintigraphy and Real images for Sentinel Lymph Node Biopsy in Breast Cancer Patients (유방암 환자의 감시림프절 생검을 위한 림포신티그라피와 실사영상의 합성)

  • Jeong, Chang-Bu;Kim, Kwang-Gi;Kim, Tae-Sung;Kim, Seok-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.114-122
    • /
    • 2010
  • This paper presents a method that registers a lymphoscintigraphy to the real image captured by a CMOS camera, which helps surgeons to easily and precisely detect sentinel lymph nodes for sentinel lymph node biopsy in breast cancer patients. The proposed method consists of two steps: pre-matching and image registration. In the first step, we localize fiducial markers in a lymphoscintigraphy and a real image of a four quadrant bar phantom by using image processing techniques, and then determines perspective transformation parameters by matching with the corresponding marker points. In the second step, we register a lymphoscintigraphy to a real images of patients by using the perspective transformation of pre-matching. To examine the accuracy of the proposed method, we conducted an experiment with a chest mock-up with radioactive markers. As a result, the euclidean distance between corresponding markers was less than 3mm. In conclusion, the present method can be used to accurately align lymphoscintigraphy and real images of patients without attached markers to patients, and then provide useful anatomical information on sentinel lymph node biopsy.

Preprocessing for High Quality Real-time Imaging Systems by Low-light Stretch Algorithm

  • Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.585-589
    • /
    • 2018
  • Consumer demand for high quality image/video services led to growing trend in image quality enhancement study. Therefore, recent years was a period of substantial progress in this research field. Through careful observation of the image quality after processing by image enhancement algorithms, we perceived that the dark region in the image usually suffered loss of contrast to a certain extent. In this paper, the low-light stretch preprocessing algorithm is, hence, proposed to resolve the aforementioned issue. The proposed approach is evaluated qualitatively and quantitatively against the well-known histogram equalization and Photoshop curve adjustment. The evaluation results validate the efficiency and superiority of the low-light stretch over the benchmarking methods. In addition, we also propose the 255MHz-capable hardware implementation to ease the process of incorporating low-light stretch into real-time imaging systems, such as aerial surveillance and monitoring with drones and driving aiding systems.

Implementation of Real-Time Image Blurring System for User Privacy Support (사용자 보호를 위한 실시간 이미지 모자이크 처리 시스템 개발)

  • Minyeong Kim;Suah Jeon;Jihoon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.39-42
    • /
    • 2023
  • Recently, with the explosive increase of video streaming services, real-time live broadcasting has also increased, which leads to an infringement problem for user privacy. So, to solve such problems, we proposed the real image blurring system using dlib face-recognition library. 68 face landmarks are extracted and convert into 128 vector values. After that the proposed system tries to compare this value with the image in the database, and if it is over 0.45, it is considered as different person and image blurring processing is performed. With the proposed system, it is possible to solve the problem of user privacy infringement, and also to be utilized to detect the specific person. Through experimental results, the proposed system has an accuracy of more than 90% in terms of face recognition.

  • PDF

Approximated Constrained Least Squares Filter for Real-Time Directionally Adaptive Image Restoration (제약적 최소 제곱 필터의 근사화를 이용한 실시간 방향 적응적 영상복원)

  • Cho, Changhun;Jeon, Jaehwan;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.150-158
    • /
    • 2013
  • In this paper we present approximated constrained least squares filter for real-time directionally adaptive image restoration. The proposed method makes a hardware implementation easier for real-time image restoration because of reducing the filter size. Furthermore, for directional adaptive image restoration, this paper estimates the local orientation by analyzing the covariance matrix and applies to approximated constrained least squares filter. Experimental results show that the proposed method is sharper and less artifacts than existing methods.

An Onboard Image Processing System for Road Images (도로교통 영상처리를 위한 고속 영상처리시스템의 하드웨어 구현)

  • 이운근;이준웅;조석빈;고덕화;백광렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.498-506
    • /
    • 2003
  • A computer vision system applied to an intelligent safety vehicle has been required to be worked on a small sized real time special purposed hardware not on a general purposed computer. In addition, the system should have a high reliability even under the adverse road traffic environment. This paper presents a design and an implementation of an onboard hardware system taking into account for high speed image processing to analyze a road traffic scene. The system is mainly composed of two parts: an early processing module of FPGA and a postprocessing module of DSP. The early processing module is designed to extract several image primitives such as the intensity of a gray level image and edge attributes in a real-time Especially, the module is optimized for the Sobel edge operation. The postprocessing module of DSP utilizes the image features from the early processing module for making image understanding or image analysis of a road traffic scene. The performance of the proposed system is evaluated by an experiment of a lane-related information extraction. The experiment shows the successful results of image processing speed of twenty-five frames of 320$\times$240 pixels per second.

Real-time system control for the 6-DOF simulation (6-DOF 시뮬레이터의 real-time 시스템 제어에 관한 연구)

  • 김영대;김충영;백인철;민성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.17-21
    • /
    • 1989
  • 6-DOE simulator system is designed to real-time processing for motion control, data acquisition, image generation and image processing etc.. In this paper, we introduce hardware and software design technologies for distributed processing, event-trapping, system monitoring and time scheduling procedure in 6-DOF simulator system design.

  • PDF

Implementation of RTP based Image Transport System using JPEG2000 (RTP 기반의 JPEG2000 영상 전송 시스템 구현)

  • 박동진;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.355-358
    • /
    • 2002
  • In this paper, we propose RTP(Real-Time Transport Protocol) based image transport system to transport still images in real-time after JPEG2000 compression, which is still image compression standard for next generation. To add RTP packet on UDP packet, the image transport system inserts packetizer and depacketizer process into transmitter and receiver of RTP data, respectively. We apply the proposed system to several image and compare the transport time to TCP-based method.

  • PDF

Design of an Image Processor for UXGA Class LCD

  • Cho, Hwa-Hyun;Choi, Myung-Ryul
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • We propose a universal image processor for a-Si TFT LCD of UXGA class that can display the full screen on the LCD panel with low resolution of video sources such as NTSC, VGA, SVGA, XGA, and SXGA by using the proposed interpolation filter. In addition, we propose a real-time contrast controller for image improvement of multi-gray scale image. The operation of the proposed methods has been verified using Synopsys VHDL and computer simulation. Results show that the proposed methods might be suitable for a UXGA LCD controller for real-time image improvement.

  • PDF

Implementation of the multi-target tracker for MIROSOT

  • In, Chu-Sik;Choi, Yong-Hee;Lee, Ja-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.828-831
    • /
    • 1997
  • One of the most important design factor for the image tracker is the speed of the data processing which allows real-time operation of the system and provides reasonably accurate performance at the same time. Use of powerful DSP alone does not guarantee to meet such requirement. In this paper, a simple efficient algorithm for real-time multi-target image tracking is suggested. The suggested method is based on a recursive centroiding technique and color table look-up. This method has been successfully implemented in a image processing system for Micro-Robot Soccer Tournament(MIROSOT). This tracker can track positions of a ball, 3 enemies, and 3 agents at the same time. The experimental results show that the processing time for each frame of image is less than 7ms, which is well within the 60Hz sampling interval for real-time operation.

  • PDF