• Title/Summary/Keyword: Reactor performance

Search Result 1,288, Processing Time 0.023 seconds

Performance Prediction of Main Coolant Pump in Integral Reactor SMART (일체형원자로 SMART 냉각재순환펌프의 성능예측)

  • Kim Min-Hwan;Park Jin-Seok;Kim Jong-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118-125
    • /
    • 2001
  • The performance prediction of SMART MCP was performed using a computational fluid dynamics code. General capacity-head performance curve of MCP, which is provided to other design branches as design input, was obtained and it showed the typical type of axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART requires reduced power operation. A procedure for predicting the performance of SMART MCP for that case was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of sloped MCP is fixed or free to rotate in reverse direction. According to the results, $73\%$ flow rate of normal operation enters the reactor core in the case of the locked impeller. In case of the impeller free rotation, the flow rate entering the reactor core is $62.8\%$.

  • PDF

Performance Qualification Test of the CRDM for JRTR (요르단 연구용원자로 제어봉구동장치의 성능검증시험)

  • Choi, M.H.;Cho, Y.G.;Kim, J.H.;Lee, K.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.807-814
    • /
    • 2015
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The top-mounted CRDM for Jordan Research and Training Reactor(JRTR) with 5 MW power has been designed and fabricated based on the HANARO's experience through KAERI and DAEWOO consortium project. This paper describes the performance qualification test results to demonstrate the operability of a prototype and four production CRDMs during the reactor lifetime. The driving performance, the drop performance and the endurance tests for CRDM are carried out at a test rig simulating the actual reactor conditions. A vibration of internal components due to the coolant flow is also measured using a laser vibrometer. As a result, the CRDMs are driven having a good driving performance without a malfunction between command and output signals for the stepping motor. Also, the pure drop time and the impact acceleration are within 0.72 s and 4.2 g to meet the design requirements, and the vibrational displacement of control rod is measured as maximum $5.2{\mu}m$.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

Experimental Study on Millimeter Scale Two Phase Catalytic Reactor (밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구)

  • Cho, Chung-Hun;Lee, Dae-Hoon;Kwon, Se-JIn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.

Performance Analysis of Water Gas Shift Reaction in a Membrane Reactor (막반응기에서의 수성가스전이반응의 성능 분석)

  • Lim, Hankwon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.204-208
    • /
    • 2014
  • This study investigated the effect of hydrogen permeance and selectivity, catalyst amount, $H_2O/CO$ ratio in a feed stream, and Ar sweep gas on the performance of a water gas shift reaction in a membrane reactor. It was observed that a minimum hydrogen selectivity of 100 was needed in a membrane reactor to obtain a hydrogen yield higher than the one at equilibrium and the hydrogen yield enhancement gradually decreased as the hydrogen permeance increased. The CO conversion in a membrane reactor initially increased with the catalyst amount and reached a plateau later for a membrane reactor with a low hydrogen permeance while the high CO conversion independent of a catalyst amount was observed for a membrane reactor with a high hydrogen permeance. For the $H_2O/CO$ ratio in a feed stream higher than 1.5, a hydrogen permeance had little effect on the CO conversion in a membrane reactor and it was found that a minimum Ar molar flow rate of $6.7{\times}10^{-6}mol\;s^{-1}$ was needed to achieve the CO conversion higher than the one at equilibrium in a membrane reactor.

Performance Evaluation of a Main Coolant Pump for the Modular Nuclear Reactor by Computational Fluid Dynamics (전산해석에 의한 일체형 원자로용 주냉각재 펌프의 성능분석)

  • Yoon Eui-Soo;Oh Hyoung-Woo;Park Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.818-824
    • /
    • 2006
  • The hydrodynamic performance analysis of an axial-flow main coolant pump for the modular nuclear reactor has been carried out using a commercial computational fluid dynamics (CFD) software. The prediction capability of the CFD software adopted in the present study was validated in comparison with the experimental data. Predicted performance curves agree satisfactorily well with the experimental results for the main coolant pump over the normal operating range. π Ie prediction method presented herein can be used effectively as a tool for the hydrodynamic design optimization and assist the understanding of the operational characteristics of general purpose axial-flow pumps.

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

Application of Economic Risk Measures for a Comparative Evaluation of Less and More Mature Nuclear Reactor Technologies

  • Andrianov, A.A.;Andrianova, O.N.;Kuptsov, I.S.;Svetlichny, L.I.;Utianskaya, T.V.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.431-439
    • /
    • 2018
  • Less mature nuclear reactor technologies are characterized by a greater uncertainty due to insufficient detailed design information, operational data, cost information, etc., but the expected performance characteristics of less mature options are usually more attractive in comparison with more mature ones. The greater uncertainty is, the higher economic risks associated with the project realization will be. Within a comparative evaluation of less and more mature nuclear reactor technologies, it is necessary to apply economic risk measures to balance judgments regarding the economic performance of less and more mature options. Assessments of any risk metrics involve calculating different characteristics of probability distributions of associated economic performance indicators and applying the Monte-Carlo method. This paper considers the applicability of statistical risk measures for different economic performance indicators within a trial case study on a comparative evaluation of less and more mature unspecified LWRs. The presented case study demonstrates the main trends associated with the incorporation of economic risk metrics into a comparative evaluation of less and more mature nuclear reactor technologies.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.