• 제목/요약/키워드: Reactor modeling

검색결과 352건 처리시간 0.026초

Fuzzy-PID controller for motion control of CFETR multi-functional maintenance platform

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Wu, Huapeng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2251-2260
    • /
    • 2021
  • The motion control of the divertor maintenance system of the China Fusion Engineering Test Reactor (CFETR) was studied in this paper, in which CFETR Multi-Functional Maintenance Platform (MFMP) was simplified as a parallel robot for the convenience of theoretical analysis. In order to design the motion controller of parallel robot, the kinematics analysis of parallel robot was carried out. After that, the dynamic modeling of the hydraulic system was built. As the large variation of heavy payload on MFMP and highly nonlinearity of the system, A Fuzzy-PID controller was built for self-tuning PID controller parameters by using Fuzzy system to achieve better performance. In order to test the feasibility of the Fuzzy-PID controller, the simulation model of the system was built in Simulink. The results have showed that Fuzzy-PID controller can significantly reduce the angular error of the moving platform and provide the stable motion for transferring the divertor.

Utilization of Waste Aluminium Foil as a Sacrificial Electrode for the Treatment of Wastewater

  • Perumalsamy, Rajagopal;Kumaran, Chithra;Rajamanickam, Vaishali
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.92-100
    • /
    • 2021
  • In this study, the use of waste food grade aluminium foil and mild steel as a sacrificial electrode in an electrocoagulation system was developed to remove reactive red 111 from wastewater. The effect of different parameters like pH, current density, electrode material, and different electrode configurations was investigated. Optimum operating conditions for maximum COD removal were determined as, 6 mA/㎠ current density and 30 min at 5 pH for aluminium foil and 7 pH for mild steel. Maximum COD reduction obtained at optimum conditions using monopolar 4 electrodes, monopolar 2 electrodes and bipolar electrode configuration were 96.5%, 89.3%, and 90.2% for Mild steel as a sacrificial electrode and 92.1%, 84.2%, and 88.6% for aluminium foil as a sacrificial electrode. The consumption of electrode and energy for both the electrodes of different configurations were calculated and compared. Using batch experimental data, a continuous-flow reactor was developed. Sludge analysis using Fourier Transform Infra-Red Spectroscopy (FTIR) analysis was done. Different adsorption kinetic models and isotherms were developed and it was found that pseudo second-order model and Langmuir isotherm fit best with the experimental data obtained.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

Design and dynamic simulation of a molten salt THS coupled to SFR

  • Areai Nuerlan;Jin Wang;Jun Yang;Zhongxiao Guo;Yizhe Liu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1135-1144
    • /
    • 2024
  • With the increasing ratio of renewables in the grid, a low-carbon and stable base load source that also is capable of load tracking is in demand. Sodium cooled fast reactors (SFRs) coupled to thermal heat storage system (THS) is a strong candidate for the need. This research focuses on the designing and performance validation of a two-tank THS based on molten salt to integrate with a 280 MWth sodium cooled fast reactor. Designing of the THS includes the vital component, sodium-to-salt heat exchanger which is a technology gap that needs to be filled, and designing and parameter selection of the tanks and related pumps. Modeling of the designed THS is conducted followed by the description of operation strategies and control logics of the THS. Finally, the dynamic simulation of the designed THS is conducted based on Fortran. Results show, the proposed power system meets the need of the design requirements to store heat for 18 h during a day and provide 500 MWth for peak demand for the rest of the day.

MFM-based alarm root-cause analysis and ranking for nuclear power plants

  • Mengchu Song;Christopher Reinartz;Xinxin Zhang;Harald P.-J. Thunem;Robert McDonald
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4408-4425
    • /
    • 2023
  • Alarm flood due to abnormality propagation is the most difficult alarm overloading problem in nuclear power plants (NPPs). Root-cause analysis is suggested to help operators in understand emergency events and plant status. Multilevel Flow Modeling (MFM) has been extensively applied in alarm management by virtue of the capability of explaining causal dependencies among alarms. However, there has never been a technique that can identify the actual root cause for complex alarm situations. This paper presents an automated root-cause analysis system based on MFM. The causal reasoning algorithm is first applied to identify several possible root causes that can lead to massive alarms. A novel root-cause ranking algorithm can subsequently be used to isolate the most likely faults from the other root-cause candidates. The proposed method is validated on a pressurized water reactor (PWR) simulator at HAMMLAB. The results show that the actual root cause is accurately identified for every tested operating scenario. The automation of root-cause identification and ranking affords the opportunity of real-time alarm analysis. It is believed that the study can further improve the situation awareness of operators in the alarm flooding situation.

Uncertainty analysis of UAM TMI-1 benchmark by STREAM/RAST-K

  • Jaerim Jang;Yunki Jo;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1562-1573
    • /
    • 2024
  • This study rigorously examined uncertainty in the TMI-1 benchmark within the Uncertainty Analysis in Modeling (UAM) benchmark suite using the STREAM/RAST-K two-step method. It presents two pivotal advancements in computational techniques: (1) Development of an uncertainty quantification (UQ) module and a specialized library for the pin-based pointwise energy slowing-down method (PSM), and (2) Application of Principal Component Analysis (PCA) for UQ. To evaluate the new computational framework, we conducted verification tests using SCALE 6.2.2. Results demonstrated that STREAM's performance closely matched SCALE 6.2.2, with a negligible uncertainty discrepancy of ±0.0078% in TMI-1 pin cell calculations. To assess the reliability of the PSM covariance library, we performed verification tests, comparing calculations with Calvik's two-term rational approximation (EQ 2-term) covariance library. These calculations included both pin-based and fuel assembly (FA-wise) computations, encompassing hot zero-power and hot full-power operational conditions. The uncertainties calculated using both the EQ 2-term and PSM resonance treatments were consistent, showing a deviation within ±0.054%. Additionally, the data compression process yielded compression ratios of 88.210% and 92.926% for on-the-fly and data-saving approaches, respectively, in TMI fuel assembly calculations. In summary, this study provides a comprehensive explanation of the PCA process used for UQ calculations and offers valuable insights into the robustness and reliability of newly developed computational methods, supported by rigorous verification tests.

헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I) (High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I))

  • 송기남;이형연;김용완;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1241-1248
    • /
    • 2010
  • 초고온가스로에서 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하기 위한 시스템이 원자력수소생산시스템이며, 공정열교환기는 초고온 열과 황-요오드 공정을 통해 수소를 생산하는 원자력수소생산시스템에서의 핵심 기기이다. 한국원자력연구원에서는 초고온가스로에 사용될 기기에 대한 성능시험을 위해 최대 작동 설계온도 $1000^{\circ}C$인 헬륨가스루프를 구축하고 있으며 공정열교환기를 설계하였다. 본 연구에서는 구축중인 헬륨가스루프에서 성능시험을 수행할 예정으로 설계된 공정열교환기에 대한 고온 구조건전성을 미리 평가하기 위한 작업의 일환으로 고온구조해석 모델링, 열해석 및 열팽창 해석을 수행한 결과를 정리한 것이다. 해석결과를 이용하여 설계된 공정열교환기의 구조건전성을 유지하기 위한 1 차 및 2 차 열매체의 유입/유출 파이프라인에서의 적절한 구속조건을 결정하였으며 이를 향후 제작될 공정열교환기 시제품의 성능시험 장치 설계에 반영할 것이다.

소형 PCHE 에 대한 거시적 고온 구조 해석 모델링 (I) (Macroscopic High-Temperature Structural Analysis Model for a Small-Scale PCHE Prototype (I))

  • 송기남;이형연;김찬수;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1499-1506
    • /
    • 2011
  • 초고온가스로로부터 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하려는 원자력수소생산시스템에서 중간열교환기는 원자로에서 생산된 초고온 열을 수소생산 공장으로 전달하는 핵심 기기중의 하나이다. 한국원자력연구원에서는 초고온가스로에 사용될 핵심 기기에 대한 성능시험을 위해 소형가스루프를 구축하였고 중간열교환기의 유력한 형태로 고려되고 있는 인쇄기판형 열교환기의 소형 시제품을 제작하였다. 본 연구는 인쇄기판형 열교환기 소형 시제품을 소형가스루프에서 시험하기 전에 루프 시험조건하에서 인쇄기판형 열교환기 소형 시제품의 고온 구조건전성을 미리 평가하기 위한 작업의 일환으로 수행한 결과, 즉 고온 구조해석 모델링, 거시적 열 해석 및 구조 해석 결과 등을 정리한 것이다. 해석 결과는 인쇄기판형 열교환기 소형 시제품 성능시험결과외 비교하고 향후 제작될 중형 시제품 설계/제작에 반영할 것이다.