Acknowledgement
This research was funded by the Danish Offshore Technology Centre, Denmark.
References
- EPRI, Alarm Processing Methods: Improving Alarm Management in Nuclear Power Plant Control Rooms, 1003662, Technical Report, Electric Power Research Institute, Palo Alto, CA, 2003.
- X. Wu, Z. Li, A review of alarm system design for advanced control rooms of nuclear power plants, Int. J. Hum.-Comput. Interaction 34 (6) (2018) 477-490, http://dx.doi.org/10.1080/10447318.2017.1371950.
- J.C. Laberge, P. Bullemer, M. Tolsma, D.V.C. Reising, Addressing alarm flood situations in the process industries through alarm summary display design and alarm response strategy, Int. J. Ind. Ergon. 44 (3) (2014) 395-406, http://dx.doi.org/10.1016/j.ergon.2013.11.008.
- J. Wang, F. Yang, T. Chen, S.L. Shah, An overview of industrial alarm systems: Main causes for alarm overloading, research status, and open problems, IEEE Trans. Autom. Sci. Eng. 13 (2) (2016) 1045-1061, http://dx.doi.org/10.1109/TASE.2015.2464234.
- J.E. Larsson, B. Ohman, A. Calzada, J. DeBor, New solutions for alarm problems, in: 5th International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology, NPIC and HMIT 2006, 2006, pp. 922-929.
- W. Brown, J. O'Hara, J. Higgins, Advanced alarm systems: Revision of guidance and its technical basis, NUREG/CR-6684, Technical Report, Brookhaven National Laboratory, Upton, NY, 2000.
- B. Ohman, Alarm analysis on large systems using multilevel flow models, IFAC Proc. Vol. 33 (28) (2000) 95-100, http://dx.doi.org/10.1016/s1474-6670(17)36816-7.
- K. Parsa, S. Member, M. Hassall, M. Naderpour, Process alarm modeling using graph theory : Alarm design review and rationalization, IEEE Syst. J. 15 (2) (2021) 2257-2268. https://doi.org/10.1109/JSYST.2020.3019041
- Z. Simeu-Abazi, A. Lefebvre, J.P. Derain, A methodology of alarm filtering using dynamic fault tree, Reliab. Eng. Syst. Saf. 96 (2) (2011) 257-266, http://dx.doi.org/10.1016/j.ress.2010.09.005.
- L. Abele, M. Anic, T. Gutmann, J. Folmer, M. Kleinsteuber, B. Vogel-Heuser, Combining knowledge modeling and machine learning for alarm root cause analysis, IFAC Proc. Vol. (IFAC-PapersOnline) 46 (9) (2013) 1843-1848, http://dx.doi.org/10.3182/20130619-3-RU-3018.00057.
- Z. Cai, L. Zhang, J. Hu, Y. Yi, Y. Wang, Comprehensive alarm information processing technology with application in petrochemical plant, J. Loss Prev. Process Ind. 38 (2015) 101-113, http://dx.doi.org/10.1016/j.jlp.2015.08.010.
- J. Hu, Y. Yi, A two-level intelligent alarm management framework for process safety, Saf. Sci. 82 (2016) 432-444, http://dx.doi.org/10.1016/j.ssci.2015.10.005.
- F. Wen, C. Chang, Tabu search approach to alarm processing in power systems, IEE Proc., Gener. Transm. Distrib. 144 (1) (1997) 31-38, http://dx.doi.org/10.1049/ip-gtd:19970716.
- S. Lai, T. Chen, Methodology and application of pattern mining in multiple alarm flood sequences, IFAC-PapersOnLine 28 (8) (2015) 657-662, http://dx.doi.org/10.1016/j.ifacol.2015.09.043.
- M. Schleburg, L. Christiansen, N.F. Thornhill, A. Fay, A combined analysis of plant connectivity and alarm logs to reduce the number of alerts in an automation system, J. Process Control 23 (6) (2013) 839-851, http://dx.doi.org/10.1016/j.jprocont.2013.03.010.
- S.Y. Yim, H.G. Ananthakumar, L. Benabbas, A. Horch, R. Drath, N.F. Thornhill, Using process topology in plant-wide control loop performance assessment, Comput. Chem. Eng. 31 (2) (2006) 86-99, http://dx.doi.org/10.1016/j.compchemeng.2006.05.004.
- H. Jiang, R. Patwardhan, S.L. Shah, Root cause diagnosis of plant-wide oscillations using the concept of adjacency matrix, J. Process Control 19 (8) (2009) 1347-1354, http://dx.doi.org/10.1016/j.jprocont.2009.04.013.
- F. Yang, P. Duan, S.L. Shah, T. Chen, Capturing Connectivity and Causality in Complex Industrial Processes, in: SpringerBriefs in Applied Sciences and Technology, Springer International Publishing, Cham, 2014, http://dx.doi.org/10.1007/978-3-319-05380-6.
- R. Parvez, W. Hu, T. Chen, Real-time pattern matching and ranking for early prediction of industrial, Control Eng. Pract. 120 (61903345) (2022) 105004, http://dx.doi.org/10.1016/j.conengprac.2021.105004.
- J. Folmer, D. Pantforder, B. Vogel-Heuser, An analytical alarm flood reduction to reduce operator's workload, in: Human-Computer Interaction. Users and Applications, Springer, Berlin, Germany, 2012, pp. 297-306, http://dx.doi.org/10.1007/978-3-642-21619-0_38.
- Y. Meng, X. Song, D. Zhao, Q. Liu, Alarm management optimization in chemical installations based on adapted HAZOP reports, J. Loss Prev. Process Ind. 72 (January) (2021) 104578, http://dx.doi.org/10.1016/j.jlp.2021.104578.
- B. Zhou, W. Hu, T. Chen, Pattern extraction from industrial alarm flood sequences by a modified CloFAST algorithm, IEEE Trans. Ind. Inform. 18 (1) (2022) 288-296, http://dx.doi.org/10.1109/TII.2021.3071361.
- G. Dorgo, J. Abonyi, Sequence mining based alarm suppression, IEEE Access 6 (2018) 15365-15379, http://dx.doi.org/10.1109/ACCESS.2018.2797247.
- M. Bauer, N.F. Thornhill, A practical method for identifying the propagation path of plant-wide disturbances, J. Process Control 18 (7-8) (2008) 707-719, http://dx.doi.org/10.1016/j.jprocont.2007.11.007.
- EPRI, Model-Based Root Cause Analysis for Information Overload Management, 1012490, Technical Report, Electric Power Research Institute, Electric Power Research Institute, Palo Alto, CA, 2006.
- M. Lind, Multilevel Flow Modelling of Process Plant for Diagnosis and Control, Riso-M-2357, Technical Report, RisoNational Laboratory, Roskilde, Denmark, 1982.
- J. Larsson, Model-based alarm analysis using MFM, Annu. Rev. Autom. Program. 16 (Artificial Intelligence in Real-time Control) (1991) 121-126, http://dx.doi.org/10.1016/0066-4138(91)90020-C.
- J.E. Larsson, Diagnosis based on explicit means-end models, Artificial Intelligence 80 (1) (1996) 29-93, http://dx.doi.org/10.1016/0004-3702(94)00043-3.
- M. Gomez-Fernandez, K. Higley, A. Tokuhiro, K. Welter, W.K. Wong, H. Yang, Status of research and development of learning-based approaches in nuclear science and engineering: A review, Nucl. Eng. Des. 359 (August 2019) (2020) 110479, http://dx.doi.org/10.1016/j.nucengdes.2019.110479.
- J. Ouyang, M. Yang, H. Yoshikawa, Y. Zhou, J. Liu, Alarm analysis and supervisory control of PWR plant, in: Proceedings of Cognitive Systems Engineering in Process Control, CSEPC 2004, 2004, pp. 61-68.
- J.E. Larsson, B. Ohman, C. Nihlwing, H. Jokstad, L. Iren, J. Kvalem, M. Lind, Alarm reduction and root cause analysis for nuclear power plant control rooms, in: Proceedings Enlarged Halden Program Group Meeting, 2005, pp. 1-11.
- O. Berg, M. Kaarstad, J.E. Farbrot, C. Nihlwing, T. Karlsson, B. Torralba, Alarm systems, in: A.B. Skjerve, A. Bye (Eds.), Simulator-Based Human Factors Studies Across 25 Years - the History of the Halden Man-Machine Laboratory, Springer-Verlag, London, UK, 2011, pp. 155-168, http://dx.doi.org/10.1007/978-0-85729-003-8_10.
- F. Dahlstrand, Consequence analysis theory for alarm analysis, Knowl.-Based Syst. 15 (1-2) (2002) 27-36, http://dx.doi.org/10.1016/S0950-7051(01)00118-6.
- F. Dahlstrand, Alarm analysis with fuzzy logic and multilevel flow models, in: Research and Development in Expert Systems XV, Springer, London, UK, 1998, pp. 173-188, http://dx.doi.org/10.1007/978-1-4471-0835-1_12.
- D. Kirchhubel, X. Zhang, M. Lind, O. Ravn, Identifying causality from alarm observations, in: International Symposium on Future Instrumentation & Control for Nuclear Power Plants, ISOFIC 2017, 2017, pp. 1-6.
- X. Zhang, Assessing Operational Situations (Ph.D. thesis), Technical University of Denmark, 2015.
- B. Chandrasekaran, Functional representation and causal processes, Adv. Comput. 38 (1994) 73-143, http://dx.doi.org/10.1016/S0065-2458(08)60176-X.
- J.C. Joe, C.R. Kovesdi, MTO-3 . 1 : A human factors evaluation of an advanced human system interface for the generic pressurized water reactor simulator, in: Enlarged Halden Programme Group Meeting, no. May, 2019, pp. 1-10.
- E.K. Nielsen, M.V. Bram, J. Frutiger, G. Sin, M. Lind, A water treatment case study for quantifying model performance with multilevel flow modeling, Nucl. Eng. Technol. 50 (4) (2018) http://dx.doi.org/10.1016/j.net.2018.02.006.
- E.K. Nielsen, A. Gofuku, X. Zhang, O. Ravn, M. Lind, Causality validation of multilevel flow modelling, Comput. Chem. Eng. 140 (2020) 106944, http: //dx.doi.org/10.1016/j.compchemeng.2020.106944.
- M. Lind, X. Zhang, Functional modelling for fault diagnosis and its application for NPP, Nucl. Eng. Technol. 46 (6) (2014) 753-772, http://dx.doi.org/10.5516/NET.04.2014.721.
- W. Wang, M. Yang, Implementation of an integrated real-time process surveillance and diagnostic system for nuclear power plants, Ann. Nucl. Energy 97 (2016) 7-26, http://dx.doi.org/10.1016/j.anucene.2016.06.002.
- M. Song, A. Gofuku, Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling, Nucl. Eng. Technol. 50 (4) (2018) 542-552, http://dx.doi.org/10.1016/j.net.2018.03.004.
- M. Song, A. Gofuku, M. Lind, Model-based and rule-based synthesis of operating procedures for planning severe accident management strategies, Prog. Nucl. Energy 123 (2020) 103318, http://dx.doi.org/10.1016/j.pnucene.2020.103318.
- M. Lind, Modeling goals and functions of complex industrial plants, Appl. Artif. Intell. 8 (2) (1994) 259-283, http://dx.doi.org/10.1080/08839519408945442.
- C. Reinartz, D. Kirchhubel, O. Ravn, M. Lind, Generation of signed directed graphs using functional models, in: A. A., K. J. (Eds.), IFAC PapersOnLine 52 (11) (2019) 37-42, http://dx.doi.org/10.1016/j.ifacol.2019.09.115.
- V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies, Comput. Chem. Eng. 27 (3) (2003) http://dx.doi.org/10.1016/S0098-1354(02)00161-8.
- J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
- M. Lind, An introduction to multilevel flow modeling, Nucl. Saf. Simul. 2 (1) (2011) 22-32.
- E. Arroyo, Capturing and Exploiting Plant Topology and Process Information as a Basis to Support Engineering and Operational Activities in Process Plants (Ph.D. thesis), Helmut-Schmidt-Universitat, Hamburg, 2017.
- J. Wu, M. Lind, X. Zhang, K. Pardhasaradhi, S. Pathi, C. Myllerup, Knowledge acquisition and representation for intelligent operation support in offshore fields, Process Saf. Environ. Prot. 155 (2021) 415-443, http://dx.doi.org/10.1016/j.psep.2021.09.036.
- J. Itoh, A. Sakuma, K. Monta, An ecological interface for supervisory control of BWR nuclear power plants, Control Eng. Pract. 3 (2) (1995) 231-239, http://dx.doi.org/10.1016/0967-0661(94)00081-Q.