• 제목/요약/키워드: Reactor Safety System

검색결과 573건 처리시간 0.033초

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.

Conceptual design of a MW heat pipe reactor

  • Yunqin Wu;Youqi Zheng;Qichang Chen;Jinming Li;Xianan Du;Yongping Wang;Yushan Tao
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1116-1123
    • /
    • 2024
  • -In recent years, unmanned underwater vehicles (UUV) have been vigorously developed, and with the continuous deepening of marine exploration, traditional energy can no longer meet the energy supply. Nuclear energy can achieve a huge and sustainable energy supply. The heat pipe reactor has no flow system and related auxiliary systems, and the supporting mechanical moving parts are greatly reduced, the noise is relatively small, and the system is simpler and more reliable. It is more favorable for the control of unmanned systems. The use of heat pipe reactors in unmanned underwater vehicles can meet the needs for highly compact, long-life, unmanned, highly reliable, ultra-quiet power supplies. In this paper, a heat pipe reactor scheme named UPR-S that can be applied to unmanned underwater vehicles is designed. The reactor core can provide 1 MW of thermal power, and it can operate at full power for 5 years. UPR-S has negative reactive feedback, it has inherent safety. The temperature and stress of the reactor are within the limits of the material, and the core safety can still be guaranteed when the two heat pipes are failed.

Reactor Power Cutback System Test Experience at YGN 4

  • Chi, Sung-Goo;Kim, Se-Chang;Seo, Jong-Tae;Eom, Young-Meen;Wook, Jeong-Dae;Park, Young-Boo
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.235-241
    • /
    • 1995
  • YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor Power Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems.

  • PDF

원자력 통합안전경영시스템을 이용한 요르단연구로사업의 문서관리 (Document Management for Jordan Research and Training Reactor Project by ANSIM)

  • 박국남;최민호;권용세
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.113-118
    • /
    • 2016
  • Project management is a tool for smooth operation during a full cycle from the design to normal operation including the schedule, document, and budget management, and document management is an important work for big projects such as the JRTR (Jordan Research and Training Reactor). To manage the various large documents for a research reactor, a project management system was resolved, a project procedure manual was prepared, and a document control system was established. The ANSIM (Advanced Nuclear Safety Information Management) system consists of a document management folder, document container folder, project management folder, organization management folder, and EPC (Engineering, Procurement and Construction) document folder. First, the system composition is a computerized version of the Inter-office Correspondence (IOC), the Document Distribution for Agreement (DDA), Design Documents, and Project Manager Memorandum (PM Memo) works prepared for the research reactor design. Second, it reviews, distributes, and approves design documents in the system and approves those documents to register and supply them to the research reactor user. Third, it integrates the information of the document system-using organization and its members, as well as users' rights regarding the ANSIM document system. Throughout these functions, the ANSIM system has been contributing to the vitalization of united research. Not only did the ANSIM system realize a design document input, data load, and search system and manage KAERI's long-period experience and knowledge information properties using a management strategy, but in doing so, it also contributed to research activation and will actively help in the construction of other nuclear facilities and exports abroad.

APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석 (A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+)

  • 문호림;김한곤
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

SAFETY ANALYSIS OF INCREASE IN HEAT REMOVAL FROM REACTOR COOLANT SYSTEM WITH INADVERTENT OPERATION OF PASSIVE RESIDUAL HEAT REMOVAL AT NO-LOAD CONDITIONS

  • SHAO, GE;CAO, XUEWU
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.434-442
    • /
    • 2015
  • The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

중성자 신호이용 원자로 내부 구조물 감시시스템 하드웨어 설계 (Design of Hardward Diagnostic System for Reactor Internal Structures Using Neutron Noise)

  • 박종범;박진호;황충환;김수홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2166-2168
    • /
    • 2001
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics. The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed design of hardware diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

안전등급 PLC 기반 원자로 출력제어계통 제어함 설계 (Design of Control Cabinet Based on Safety PLC for Reactor Power Control System)

  • 천종민;이종무;김석주;박민국;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1630-1631
    • /
    • 2007
  • This paper deals with the design of control cabinet based on safety PLC for reactor power control system(PCS). The PCS controls the operation of the CEDMs(Control Element Drive Mechanisms). The CEDM moves the CEAs(Control Element Assemblies) which regulates the reactor power, vertically in the reactor core. The Control Cabinet in PCS makes and conveys control signals to the power cabinet which provides power to the CEDM. We designed the Control Cabinet, based on POSAFE-Q, safety PLC. The application programs working in PLC can be programmed by pSET, Identified Development Environment.

  • PDF