• Title/Summary/Keyword: Reactor Safety System

Search Result 573, Processing Time 0.024 seconds

The Political Economy of Nuclear Reactors and Safety (원자로의 정치경제학과 안전)

  • Park, Jin-Hee
    • Journal of Engineering Education Research
    • /
    • v.15 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • The success history of Light Water Reactors (PWR and BWR) showed how a dominant technology could be shaped in a political and economical context. The american nuclear politics, the interest of american nuclear industry, and the accumulated technological know-hows made it possible that the not inherently safe reactor-Light Water Reactor- became a prominent reactor model. The path dependency of reactor technology on LWR kept the engineers from developing a new safer reactor, even if the severe reactor accidents occurred. In oder to increase safety of nuclear power system, we should understand the social shaping process of nuclear technology.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

  • Yoo, Jaewoon;Chang, Jinwook;Lim, Jae-Yong;Cheon, Jin-Sik;Lee, Tae-Ho;Kim, Sung Kyun;Lee, Kwi Lim;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1059-1070
    • /
    • 2016
  • The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

OPΔT and OTΔT Trip Setpoint Generation Methodology (OPΔT 및 OTΔT트립설정치의 생산방법)

  • Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 1984
  • Core safety limits define reactor operating conditions and parameters that will assure fuel rod and reactor system's integrity. Limiting safety system settings (LSSS) programmed into reactor protection system (RPS) then ensure a rapid reactor trip to prevent or suppress conditions which might violate the core safety limits. Generation of the LSSS must properly take into account uncertainties in both calculated and measured parameters in order to assure, with an appropriate degree of confidence, that the RPS will protect the core safety limits. Reviewed in this report are Westinghouse RPS setpoint generation philosophy, methodology of safety limit development and LSSS generation procedure. The Westinghouse RPS trip setpoint generation methodology has been established based on the calculation of core safety limits and the selection of LSSS allowing appropriate uncertainties in a conservative manner. Such conservative values of setpoint assure a high degree of core protection against fuel melting and occurrence of DNB.

  • PDF

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF

Dynamic Analysis and Structural Safety Evaluation of the Cabinet of a Reactor Safety System (원자로 보호계통 캐비닛의 동해석과 구조 안전성 평가)

  • Lee, Boo-Youn;Cho, Chung-Rae;Kim, Won-Jin;Jeong, Dong-Gwan;Shon, Jae-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.131-140
    • /
    • 2005
  • Responses of the cabinet of the reactor safety system under seismic leadings are analyzed, its dynamic characteristics and structural reliability being evaluated. Analyzed natural frequencies are compared with those measured from a resonance test. Structural safety of the cabinet is evaluated in consideration of the required response spectrums of the operation-base and safe-shutdown earthquakes. Transient responses of the cabinet are analyzed with input ground acceleration measured during the seismic test, accelerations being extracted at the locations of the main internal parts. The transient responses are compared with those from the seismic test, favorable results being shown.

Characteristics of Thermal Hazard in Methylthioisocyanate Synthesis Reaction Process (Methylthioisocyanate 합성반응 공정의 열적위험 특성)

  • Han, In-Soo;Lee, Keun-Won;Lee, Joo-Yeob
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.77-87
    • /
    • 2012
  • Compared to a batch reactor, where all reactants are initially charged to the reactor, the semi-batch reactor presents serious advantages. The feed of at least one of the reactants provides an additional way of controlling the reaction course, which represents a safety factor and increases the constancy of the product quality. The aim of this study was to investigate the characteristics of thermal hazard such as a feed time, catalysis concentration and solvent concentration in methylthioisocyanate(MTI) synthesis reaction process. The experiments were carried out by the Multimax reactor system and Accelerating rate calorimeter(ARC). The MTI synthesis reaction process has many reaction factors and complicated reaction mechanism of multiphase reaction. Through this study, we can use as a tool for assessment of thermal hazard of other reaction processes by applying experiment method provided.

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

PX-An Innovative Safety Concept for an Unmanned Reactor

  • Yi, Sung-Jae;Song, Chul-Hwa;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.268-273
    • /
    • 2016
  • An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

A Study on Seismic Probabilistic Safety Assessment for a Research Reactor (연구용 원자로에 대한 지진 확률론적 안전성 평가 연구)

  • Oh, Jinho;Kwag, Shinyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • Earthquake disasters that exceed the design criteria can pose significant threats to nuclear facilities. Seismic probabilistic safety assessment(PSA) is a probabilistic way to quantify such risks. Accordingly, seismic PSA has been applied to domestic and overseas nuclear power plants, and the safety of nuclear power plants was evaluated and prepared against earthquake hazards. However, there were few examples where seismic PSA was applied in case of a research reactor with a relatively small size compared to nuclear power plants. Therefore, in this study, seismic PSA technique was applied to actually completed research reactor to analyze its safety. Also, based on these results, the optimization study on the seismic capacity of the system constituting the research reactor was carried out. As a result, the possibility of damage to the core caused by the earthquake hazard was quantified in the research reactor and its safety was confirmed. The optimization study showed that the optimal seismic capacity distribution was obtained to ensure maximum safety at a low cost compared with the current design. These results, in the future, can expect to be used as a quantitative indicator to effectively improve the safety of the research reactor with respect to earthquakes.