• 제목/요약/키워드: Reactor Safety System

검색결과 561건 처리시간 0.025초

Comparison of auxiliary Feedwater and EDRS Operation during Natural Circulation of MRX

  • Kim, Jae-Hak;Park, Goon-Cherl
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.514-519
    • /
    • 1997
  • The MRX is an integral type ship reactor with 100 MWt power, which is designed by Japan Atomic Energy Research Institute. It is characterized by integral type PWR, in-vessel type control roe drive mechanism, water-filled containment vessel and passive decay heat removal system. Marine reactor should have high passive safety. Therefore, in this study, we simulated the loss of flow accident to verify the passive decay heat removal by natural circulation using RETRAN-03 code. auxiliary feed water systems are used for decay heat removal mechanism and results are compared with the loss of flow accident analysis using emergency decay heat removal system by JAERI. Results are very similar to case of EDRS 1 loop operation in JAERI analysis and decay heat is successfully removed by natural circulation.

  • PDF

Passive Heat Removal Characteristics of SMART

  • Seo, Jae-Kwang;Kang, Hyung-Seok;Yoon, Joo-Hyun;Kim, Hwan-Yeol;Cho, Bong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.623-628
    • /
    • 1998
  • A new advanced integral reactor of 330 MWt thermal capacity named SMART (System-Integrated Modular Advanced Reactor) is currently under development in Korea Atomic Energy Research Institute (KAERI) for multi-purpose applications. Modular once-through steam generator (SG) and self-pressurizing pressurizer equipped with wet thermal insulator and cooler are essential components of the SMART. The SMART Provides safety systems such as Passive Residual Heat Removal System (PRHRS). In this study, a computer code for performance analysis of the PRHRS is developed by modeling relevant components and systems of the SMART. Using this computer code, a performance analysis of the PRHRS is performed in order to check whether the passive cooling concept using the PRHRS is feasible. The results of the analysis show that PRHRDS of the SMART has excellent passive heat removal characteristics.

  • PDF

A Preliminary Study for the Implementation of General Accident Management Strategies

  • Yang, Soo-Hyung;Kim, Soo-Hyung;Jeong, Young-Hoon;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.695-700
    • /
    • 1997
  • To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of .each strategy are also investigated.

  • PDF

차세대원자로 재장전수조내의 유동장에 대한 수치해석적 연구 (A numerical study of the flow field in the IRWST of KNGR)

  • 강형석;김환열;윤주현;배윤영;박종균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.205-212
    • /
    • 1999
  • Safety Depressurization System of the Korean Next Generation Reactor prevents the Reactor Coolant System from over-pressurization by discharging the coolant with high pressure and temperature into the In-containment Refueling Water Storage Tank(IRWST) during an accident. If temperature in the IRWST rises above the temperature limit of $200\;^{\circ}F$ due to the discharged coolant, an unstable steam condensation may occur and cause large load on the IRWST wall. To investigate whether this condition can be reached or not for the design basis accident, the flow and temperature distributions of water in the IRWST wire calculated by using CFX 4.2 computer code. The results show that the local water temperature does not exceeds the temperature limit within the transient time of 5 seconds.

  • PDF

REACTIVITY OSCILLATION IN SOURCE-DRIVEN SYSTEMS

  • Dulla, S.;Nicolino, C.;Ravetto, P.
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.657-664
    • /
    • 2006
  • The problem of reactivity oscillations for a point reactor constitutes an interesting aspect of nuclear reactor physics and its solution may give important information for dynamic and safety assessments. The present paper considers the problem of a reactivity oscillation for a source-driven system which involves some specific aspects that introduce significant differences with respect to the source-free situation. Assuming a square-wave shape for the reactivity insertion, the solution is derived by a fully analytical approach. The conditions for stability and instability can be identified in a straightforward way by directly studying the stationarity of the power response. Numerical results presented allow to discuss the role of the system kinetic parameters and of the time-shape of the reactivity wave.

Kt Factor Analysis of Lead-Acid Battery for Nuclear Power Plant

  • Kim, Daesik;Cha, Hanju
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.460-465
    • /
    • 2013
  • Electrical equipments of nuclear power plant are divided into class 1E and non-class 1E. Electrical equipment and systems that are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, are classified as class 1E. batteries of nuclear power plant are divided into four channels, which are physically and electrically separate and independent. The battery bank of class 1E DC power system of the nuclear power plant use lead-acid batteries in present. The lead acid battery, which has a high energy density, is the most popular form of energy storage. Kt factor of lead-acid battery is used to determine battery size and it is one of calculatiing coefficient for capacity. this paper analyzes Kt factor of lead-acid battery for the DC power system of nuclear power plant. In addition, correlation between Kt parameter and peukert's exponent of lead-acid battery for nuclear plant are discussed. The analytical results contribute to optimize of determining size Lead-acid battery bank.

Dynamic data validation and reconciliation for improving the detection of sodium leakage in a sodium-cooled fast reactor

  • Sangjun Park;Jongin Yang;Jewhan Lee;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1528-1539
    • /
    • 2023
  • Since the leakage of sodium in an SFR (sodium-cooled fast reactor) causes an explosion upon reaction with air and water, sodium leakages represent an important safety issue. In this study, a novel technique for improving the reliability of sodium leakage detection applying DDVR (dynamic data validation and reconciliation) is proposed and verified to resolve this technical issue. DDVR is an approach that aims to improve the accuracy of a target system in a dynamic state by minimizing random errors, such as from the uncertainty of instruments and the surrounding environment, and by eliminating gross errors, such as instrument failure, miscalibration, or aging, using the spatial redundancy of measurements in a physical model and the reliability information of the instruments. DDVR also makes it possible to estimate the state of unmeasured points. To validate this approach for supporting sodium leakage detection, this study applies experimental data from a sodium leakage detection experiment performed by the Korea Atomic Energy Research Institute. The validation results show that the reliability of sodium leakage detection is improved by cooperation between DDVR and hardware measurements. Based on these findings, technology integrating software and hardware approaches is suggested to improve the reliability of sodium leakage detection by presenting the expected true state of the system.

원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구 (Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant)

  • 박종혁;최광희;이상국;박종은
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Testbench Implementation for FPGA based Nuclear Safety Class System using OVM

  • Heo, Hyung-Suk;Oh, Seungrohk;Kim, Kyuchull
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.566-571
    • /
    • 2014
  • A safety class field programmable gate array based system in nuclear power plant has been developed to improve the diversity. Testbench is necessary to satisfy the technical reference, IEC-62566, for verification and validation of register transfer level code. We use the open verification methodology(OVM) developed by standard body. We show that our testbench can use random input for test. And also we show that reusability of block level testbench for the integration level testbench, which is very efficient for large scale system like nuclear reactor protection system.

마이크로 추력장치용 과산화수소 촉매 반응기 (Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster)

  • 이대훈;조정훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF