ISSN: 1226-7244 (Print)
ISSN: 2288-243X (Online)
=S 14-04-18

jinst.Korean.electr.electron.eng.Vol.18 No.4,566 ~571,December 2014

http://dx.doi.org/10.7471/ikeee.2014.18.4.566
125

Testbench Implementation for FPGA based Nuclear Safety
Class System using OVM

Hyung-suk Heo’, Seungrohk Oh™, Kyuchull Kim"

Abstract

A safety class field programmable gate array based system in nuclear power plant has been developed to

improve the diversity.

Testbench is necessary to satisfy the technical reference, IEC-62566, for verification

and validation of register transfer level code. We use the open verification methodology(OVM) developed by

standard body. We show that our testbench can use random input for test. And also we show that reusability

of block level testbench for the integration level testbench, which is very efficient for large scale system like

nuclear reactor protection system.

Key words: integration testbench, ovi, finctional verification, code coverage, nuclear, control system

I. Introduction

Micro-processor based system has been used for
digital nuclear reactor protection system. Recently
field programmable gate array(FPGA) based safety
class system has been developed for the protection
system as a diversity method to improve the safety
of nuclear power plant. The development process of
FPGA is different from that of micro-process based
system. Therefore the verification and validation of
FPGA should be different with software verification
and validation which is wused for micro-process
based system. There is no technical reference for
the verification and validation of FPGA until 2012.

Dept. of Electronics and Electrical Engineering,
Dankook University
Dept. of Applied Computer
Dankook. University

ik Engineering,

* Corresponding author

Dept. of Electronics and Electrical Engineering,
Dankook University,

ohrk@dankook.ac.kr, 031-8005-3634

% Acknowledgment

This work was supported by Korea Ministry of Trade,
Industry & Energy(Development of Licensing and
Validation — Technology)

Manuscript received Nov. 25, 2014; revised Dec. 8,
2014 ; accepted Dec. 8, .2014

(566)

International Electrotechnical Commission(IEC)
issued the technical reference of verification and
validation for FPGA named “Nuclear power plants -
Instrumentation and control important to safety -
Development of HDL-programmed integrated circuits
for systems performing A
functions(IEC-62566)"[1]. IEC-62566 the

testbench for the verification and validation which is

category
required

used to get the code coverage and functional
coveragel2,3,4,5,6]
hardware descriptive language(HDL).
the testbench for the actual
system VHDL code developed by Korea Atomic

for the code written by the
We develop
reactor protection
Energy Research Institute and Doosan Heavy
Industrials & Construction. The testbench uses the
Open Verification Methodology(OVM)[7,8] which is
developed by a standard organization, Accellera. The
methodology is open source and very efficient for
large scale system like a reactor protection system.
OVM provides the the testbench
components and the library is written by
SYSTEMVERILOG which has property that can

generate the random test signal. After building the

library for

block level testbenchs, we can build the integrated

level testbench using the block level testbenchs.

The reusability of block level test bench component

126

gives us saving the workload for integrated test.
We that how to build the block
testbenchs for the early version RTL code of a

show level
safety class system developed by Doosan Heavy

Industrials & Construction and Korea Atomic
Energy Research Institute and test results using
OVM. We demonstrate the reusability of testbench
component used in block level testbench for the
integration level testbench. We also have shown
that we can get the test results of each block
during the integration test without the modification

of Design Under Test(DUT).

Il. Testbench Build Up

The purpose of a testbench is to analyze the
correctness of Design Under Test(DUT). This can
be
- Generate stimulus

- Apply stimulus to the DUT

- Obtain the response from DUT

Check the properties of the response of DUT to

hold

done by the following steps[3]:

be

To this end, one can build the testbench as shown
in Fig. 1.

TestBench

Input
port

Output
port

DUT

Fig. 1 A simple testbench[3]

We called a simple testbench such as shown in Fig.
1. A test input is applied to input port of DUT and
simulate the DUT to check the specifications. A
simple testbench is very efficient for small size of
DUT. However, if the DUT is large and complex, it
requires a long time and lots of workloads[3]. The
layered testbech[3] as shown in Fig. 2 uses the

(567)

j.inst.Korean.electr.electron.eng.Vol.18,No.4,566 ~571,December 2014

smaller pieces of testbench components, namely

signal layer component, command layer component,

functional layer component, scenario layer
component.
Test input
Generator
Scenario

layer

Functional
layer

‘ Command
layer

Signal
layer

Fig. 2 Layered testbench[3]

Each component of testbench can be developed
separately. Also most of modules can be reused
when DUT is changed. Standard body, Accellera,

develops a layered testbench architecture called
Open Verification Methodology(OVM)[7,8]. OVM
structure is shown in Fig 3.

Test

@ Sequencer VI 'I: DUT

Fig. 3 Open Verification Methodology structure

OVM uses SYSTEMVERILOG which
hardware descriptive language for testbench. The

is suitable

advantages of OVM are the use of random test
signal and reusability for the integrated test as we
will show later on. Thus the workloads are saved
for the test.

1. OVM Structure[2,3]

OVM structure is shown in Fig. 3. The Agent is a
of testbench which to

generate and to monitor the pin level transaction.

set components allows

Each component of Agent includes following:

Testbench Implementation for FPGA based Nuclear Safety Class System using OVM

- Sequence item : set of test input vector for DUT

Driver : covert the sequence item data to pin
level transaction

- Sequencer: deliver the sequence item to driver

- Monitor : observe the pin level activity and sent
to analysis component such as scoreboard which
compare the expected value and DUT output

- Interface : connect the driver and DUT

Analysis component of OVM include the following:
check the DUT behavior correctly

by comparing the expected value and DUT output

- Scoreboard :
- Predictor generate the expected value given
sequence item

Coverage collector monitor the functional

coverage using covergoup

2. Testbench build-up using OVM

In order to build up a testbench, we analyze the
DUT and identify the testable components of DUT
called block level component and set up the strategy
how we integrate block level components. As an
example we consider a part of early version of
digital output module in the FPGA based reactor
protection system which is developed by Doosan
Heavy Industrials & Construction and Korea Atomic
Energy Research Institute in the Fig. 4.

Process
module

Process

module L

FDO RX

Fig. 4 Integration of the digital output module

TX module convert the parallel data of process
module to serial data and its output consists of
data, CRC
data and is fed to the digital output module named
FDO module. The output of FDO module
function, module identification number, data to be
transferred process modules, and CRC data. The
output of FDO module is fed to RX module to
transfer the data to process module. The outputs of

function, module identification number,

is

RX module are the data, CRC, and memory address
to be stored. Testbench for FDO block is shown in
Fig. 5.

(568)

127
match ?
Test ?nrismatch ?
Env ‘S .
() Predictor {) stimulus
S
o
o <
J Seq
Agent | & (5) actual
)
‘s
_‘ F| len) expected
N’
d Sequencer Driver | I D
» F
item Pin-level O
activity

Fig. 5 Testbench for FDO module

We use the sequence items consisting of function,
module identification number, data, CRC data as in
Fig 6.

fdo_v_seq

function_sey
start();
ID_seq
start();
data_seq
start();

function
sequence

cre

sequence sequence sequence

Fig. 6 Sequence item for FDO module

As for test input we generate constrained random
sequence for function sequence since the number of
limited. We the
sequences for data. ID sequence is the identification

function is generate random
of slot and it is fixed. We compare the DUT output
with expected output in the scoreboard. The result
of test is shown in Fig 7.

All of 3415
expected value. Similarly we develop the testbench

for TX block and RX block.

sequence items matched with the

128

£

H#tsass4444 I00-0L0CKLEVEL SCOREZORRDSss3d4d e tadadaisaddast
H

£

PO =20

¥ INPUT Serial Word[0] : 2bl0 EXPECTED CUTPUL(O] & 2510

¢ INPUT Serial Word[l] : 44f1 EXPECTED QUTRUT[1] & 441

¥ INFUT Serisl Word[2] : 54d2 EXPECTED QUTRUI[Z] : L1f0

b INPUT Serial Word[3] : 4ale EXPECIED QUIRDI[3] : L1f1

b INFUI Serial Word[4] : 5SeSe EXPECTED QUTROI[4] : L1f2

b INFUT Serial Word[S] : 4%ed EXPECTED QUTROL(S] ; L1E3

F INFUT Serial Word[] : 53ef EXPECTED CUTPUI[6] : L1E4

b INFUT Serial Word[7] : Odac EXPECTED CUTFUI[7] : Z8dc

i3

#

poav Test Pactern Passed : 1000 ek

P+ Eypected values pacched by OMD : 3415 mismatched : 0 hik
£

Fig. 7 Test result for FDO

3. Integration of block level testbenchs

We develop the testbench for the integration of RX,
TX, and FDO block as shown in Fig. 8

TX, FDO, and RX block is connected through the
in Fig. 9. Note that the
interfaces used in the integration level testbench are

interfaces as shown

defined and used in the block level testbench and
we simply connect the TX interface and FDO
interface, FDO interface and RX interface for the
integration testbench.

always @(TX.sout) begin
FDO.sin=TX.sout;
end
always @(FDO.sout) begin
RX.sin=FDO.sout;
end
Fig. 9 interface connection for the integration level
testbench

Since FDO input is fed from TX output and RX
input is fed from FDO output in integration level
test, we disable the drivers in the FDO agent and
RX agent as shown in Fig. 8 The test input is
applied to TX Agent, TX output feed to FDO, and
FDO output feed to RX. The expected value of RX
output and the actual

value of RX output is

compared in the integration scoreboard in Fig. 8.

(569)

j.inst.Korean.electr.electron.eng.Vol.18,No.4,566 ~571,December 2014

TX_agent

Ty MOl

Virtual

Sequence

Integrats
Score!

ed Level
board

Fig. 8 Integration level testbench

0,
TX_agent matéhf?
0 fen
—|U
| I||R
= X

The integration level test results in the integration

scoreboard are shown in Fig. 10. We use the 1000

test inputs and there are no errors.

#44843448884 INTEGRATION-LEVEL SCOREBORRDE 4444444004000 00008844

#

$
#ifaaaiaaasasaaanangg

4

-Operation Mede = WRITE

i

$

Module ID = Digital Out

#pidiaiaaaaaaaaanaagg

tx INPUT Reg : 2b20 OUTPUT Serial data : 2b20 fdo INPUT Serial data : 2b20
HE 1338 ¢ 441l T 4411
: 6a7l : §a7l : 6aTl
1 7848 1 7848 1 7848
HE- X] : cc63 : cced
XXXX T XXXX I XXXX
i XXXX i KXXX i KXXX
I OXXXX ¢ OXXXX T OXXXK
i

4 OUTPUT Serial data : 2b20 rx INPUT Serial data : 2b20 OUIPUT Reg data : 11£0
) T 44EL T 44f1 s U1
$: 1110 + 11£0 : 11£2
: 111 : 111 : 11£3
$ ¢ 11£2 s 11f2 ¢ 1184
i : 11£3 s 11£3 + 9928
$ + 1114 : 1154 ! XXXX
: 9928 9928 i OXXXX

§ HHRRKERKKRKRRRREKRXARHELRSE 3equence passed : 1000 occured erres

Fig. 10 Integration level test results

The Fig. 11 summarizes the test results in the TX,
FDO, and RX scoreboards during the integration
test. If we do not verify the block level output
during the integration test, it is possible that there
is no errors in integration level test even if there

: 0%

Testbench Implementation for FPGA based Nuclear Safety Class System using OVM

are some errors in the block level. However our
integration level testbench can verify the block level
11

integration test without modification of DUT. Note

test results as shown in Fig. during the

that a modification of DUT is not desirable for a
test purpose

#4445 544 4444 TE-BLOCKLEVEL SCOREBCRRDF##444 444855548085 855 544

#

#

CMD = 20

INPUT 1&'b Register[0] : 2b20 OUTPEUT Serial Werd[0] : 2b20
INPUT 16'b Register[l] : 44f1 OUTPUT Serial Word[l] : 44f1
INPUT 16'b Register[2] : 6a7l OUTPUT Serial Werd[2] : 6a7l
INPUT 16'b Register[3] : 7848 OUTPUT Serial Word[3] : 7848
INPUT 16'b Register[4] : cc&3 OUTPUT Serial Word[4] : ccé3
INPUT 16'b Register[5] : xuxx OUTPUT Serial Word[5] : xxxx
INPUT 16'b Register[6] : xuxx OUTPUT Serial Word[6] : xxxx
INPUT 16'L Register[7] : xxxx OUTPUT Serial Word([7] : Xxax
#

#

*** Data matched : 2332 mismatched : 0 ***

##i#i4#444H4F00-BLOCKLEVEL SCOREBOARDH###HHHHHHIHHHH

#

#

FCMD =20

INPUT Serial Word[0] : 2b20 EXPECIED CUTEBUT[Q] : 2b20
INPUT 3erial Word[l] : 441 EXPECIED QUIEUI[1] : 44fl
INPUT 3erial Word[2] : €a71 EXPECIED QUTEUT[2] : 110
INPUT Serial Word[3] : 7848 EXPECIED QUTPUT[3] : 11f1
INPUT Serial Word[4] : cce3 EXPECIED QUTPUT[4] : 11f2
INPUT Serial Word[5] : wmawx EXPECIED QUTPUI(S] : 11f3
% INPUT Serial Word[6] : xaxx EXPECTED QUTEUT[6] : 11f4
INPUT Serial Word[7] : xaxx EXPECTED QUTEUT[7] : 9928
#

#

#+* Expected values matched by CMD : 3335 mismatched : 0 hhk

44444444444 448K -BLOCKLEVEL SCOREBCARD# #4444 4444555855555 585454

#

#

CMD = 20

INPUT Serial Word[0] : 2b20 OUTPUT[0] : 11£0

INPUTI 3erial Word[1] : 44f1 OUTPUT([1] : 11fl

INPUI 3erial Word[2] : 11£0 OUTPUT([2] : 11f2

INPUT Serial Word[3] : 11£1 OUTFUT[3] : 11f3

INPUT Serial Word[4] 11£2 COUTPUT[4] : 11£4

INPUI 3erial Word[5] : 11£3 OUTPUT([5] : 9928

INPUI 3erial Word[6] : 11f4 OUTPUT[6] : HXXX

INPUT Serial Word[7] : 99828 OUTPUT([7] : xxxx

#

#

*** Data matched : 3333 mismatched @ 0 k**
#

Fig. 11 TX, FDO, and RX scoreboard during

integration test.

The Fig. 12 shows the code coverage results in the
We only build the
integration test,

integration level testbenches.

integration scoreboard for while

other components of integration testbench reuse the

pre-developed components used in block level

(570)

129

testbench. This can save lots of workloads for the
integration level testbench of the large scale system
like a reactor protection system.

Coverage Report Summary Data by DU

Design Unit: work.fdo in slotll {behavicral

Enabled Coverage Active Hits Misses % Covered
Stmts 214 206 g 36.2
Branches 162 154 2 95.0
FEC Condition Terms 31 28 5 83.8
FEC Expressaion Terms a a a 100.0
States 10 10 a 100.0
Transitions 22 16 a T2.7
Toggle Bins 1595 239 756 52.6
Design Unit: work.rx({behavioral)
Enabled Lctive Hits Misses § Covered
Stmts a3 54 7 8&.8
Branches 66 58 2 a87.8
FEC Condition Terms 20 20 o 100.0
FEC Expression Terms 14 8] 57.1
States 4 4 a 100.0
Transitions T 5 2 7l.4
Toggle Bina 230 273 17 84.1
Design Unit: work.tx({behavioral)
Enabled Coverage Lctive Hits Misses ¥ Covered
Stmts 51 47 4 8221
Branches 4% 41 4 91:1
FEC Conditiecn Terms & & a 100.0
FEC Expression Terms g g8 o 100.0
States 4 4 a 100.0
Transitions T 5 2 71.4
Toggle Bins 184 123 1 899.4

Fig. 12 code coverage results for integration test

Conclusion

In order to satisfy the technical reference for FPGA
based safety class system in the nuclear power
plant, a testbench for Register Transfer Level(RTL)
is necessary to check the properties, ie., code
coverage and functional coverage. We show that a
method of building up the testbench using OVM.
Since the library of OVM

someone who is interested in build up a testbench

is an open source,

for the safety class system can use OVM without
the charge. The proposed method is very efficient
for a large scale system such as a reactor
protection system because of reusability of block
level testbenches in the integration level testbench.
And also we can verify the sub-module test results,
which imply that we can do the white box test
during the integration test. Moreover, the random
test capability in the proposed method can increases
We

and

the code coverage and functional
the

coverage.

show how we construct test input

130

testbench using OVM for actual RTL code used in
the FPGA based reactor protection system.

References
Electrotechnical

(1]

“Nuclear power plants

International Commission,

Instrumentation and

control Important to safety - Development of

HDL-programmed integrated circuits r systems
performing category A finctions,” IEC-62566, 2012

[2] Andreas Meyer, “Principles of Functional
Verification”, Nownos, 2003
[3] Christian B. Spear, “SystemVerilog for

Verification. A Guide to Learning the Testbench
Language Features’, Springer, 2006

[4] Mark Glasser, “Open Verification Methodology
Cookbook”, Springer, 2009

[5] Lionel Bening, Harry D. Foster, “Principles of
Verifiable RTL Design Second Edition A
Functional Coding Style Supporting Verification
Processes in Verilog”, Kluwer Academic Publishers,
2001

[6] Hyung-suk Heo, Seungrohk Oh, Kyuchull Kim,
“Improving Code Coverage for the FPGA based

nuclear power plant controller”,

j.inst.Korean.electr.electron.eng. vol. 18, no. 3, pp.
8-15, 2014

[7]1 Mentor Graphics Corporation, “Zestbench Guide
for OVM’, Mentor Graphics Corporation, 2011

[8] Mark Glasser, “Open Verification Methodology

Cookbook”, Springer, 2009

BIOGRAPHY

Heo Hyung-suk (Student Member)
2012 : BS degree in Electrical

Engineering, Dankook University.
2014 : MS degree in Electrical
Engineering, Dankook University.
2014~ : PhD degree course in
Electrical Engineering, Dankook

University.

(571)

j.inst.Korean.electr.electron.eng.Vol.18,No.4,566 ~571,December 2014

Seungrohk Oh (Member)

= 1980 : BS degree in Electrical
Engineering, Hanyang Unv.
1988 : MS degree in Electrical
Engineering, Polytechnic Univ.(New
York)
1994 : Ph D degree in Electrical

Engineering, Michigan State Univ.
1996~ : Professor in Dept. of Electronics and

Electrical Engineering, Dankook University.

Kyuchul

1 Kim(Member)
i

978 : BS degree in Physics, Seoul
| National University.
1986 : MS degree in Electrical

Engineering, University of

Wisconsin at Madison

1992 : PhD Degree in Electrical
| Engineering, University of
Wisconsin at Madison

1993~ : Professor, Dankook University

