• 제목/요약/키워드: Reactor Safety

검색결과 1,284건 처리시간 0.024초

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

연구로 안전 해체를 위한 스케쥴링 최적화 (Scheduling Optimization for Safety Decommissioning of Research Reactor)

  • 김태성;박희성;이종환;장성호;김상호
    • 대한안전경영과학회지
    • /
    • 제8권3호
    • /
    • pp.67-75
    • /
    • 2006
  • Scheduling of dismantling old research reactor need to consider time, cost and safety for the worker. The biggest issue when dismantling facility for research reactor is safety for the worker and cost. Large portion of a budget is spending for the labor cost. To save labor cost for the worker, reducing a lead time is inevitable. Several algorithms applied to reduce read time, and safety considered as the most important factor for this project. This research presents three different dismantling scheduling scenarios. Best scenario shows the specific scheduling for worker and machine, so that it could save time and cost.

국내 연구용원자로 PSA 수행을 위한 초기사건 선정 및 빈도 분석 (Initiating Event Selection and Analysis for Probabilistic Safety Assessment of Korea Research Reactor)

  • 이윤환
    • 한국안전학회지
    • /
    • 제36권2호
    • /
    • pp.101-110
    • /
    • 2021
  • This paper presents the results of an initiating event analysis as part of a Level 1 probabilistic safety assessment (PSA) for at-power internal events for the Korea Research Reactor (KRR). The PSA methodology is widely used to quantitatively assess the safety of research reactors (RRs) in the domestic nuclear industry. Initiating event frequencies are required to conduct a PSA, and they considerably affect the PSA results. Because there is no domestic database for domestic trip events, the safety of RRs is usually assessed using foreign databases. In this paper, operating experience data from the KRR for trip events were collected and analyzed in order to determine the frequency of specific initiating events. These frequencies were calculated using two approaches according to the event characteristics and data availability: (1) based on KRR operating experience or (2) using generic data.

Design, construction, and characterization of a Prompt Gamma Neutron Activation Analysis (PGNAA) system at Isfahan MNSR

  • M.H. Choopan Dastjerdi;J. Mokhtari;M. Toghyani
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4329-4334
    • /
    • 2023
  • In this research, a prompt gamma neutron activation analysis (PGNAA) system is designed and constructed based on the use of a low power research reactor. For this purpose, despite the fact that this reactor did not include beam tubes, a thermal neutron beam line is installed inside the reactor tank. The extraction of the beam line from inside the tank made it possible to provide the neutron flux from the order of 106 n.cm-2.s-1. Also, because the beam line is installed in a tangential position to the reactor core, its gamma level has been minimized. Also, a suitable radiation shield is considered for the detector to minimize the background radiation and prevent radiation damage to the detector. Calculations and measurements are done in order to characterize this system, as well as spectrometry of several samples. The results of evaluations and experiments show that this system is suitable for performing PGNAA.

Conceptual Safety Design Analyses of Korea Advanced Liquid Metal Reactor

  • Suk, S.D.;Park, C.K.
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.66-82
    • /
    • 1999
  • The national long-term R&D program, updated in 1997, requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor(KALIMER), along with supporting R&D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R&D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of HAMMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation.

  • PDF

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

원자로내부구조물 주기적 안전성평가 심사지침 개발 배경 (Development of Safety Review Guide for Periodic Safety Review of Reactor Vessel Internals)

  • 이기형;박정순;고한옥;정명조
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.20-24
    • /
    • 2013
  • Reactor Vessel Internals(RVIs), which are installed within the reactor pressure vessel and support the fuel assembly, take responsibility for safety of reactor core. In operating Nuclear Power Plants(NPPs), the RVIs have been exposed to severe conditions such as neutron irradiation, high temperature, high pressure, and high velocity of coolant flow and have degraded by materials aging with long-term operation. Therefore, the effective aging management plan and the appropriate regulatory requirements are necessary to maintain the integrity of RVIs. The purpose of this paper is to provide a review guide for Periodic Safety Review(PSR) of RVIs in presurized water reactor. The review guide is developed based on the revised review guides and reports established from IAEA and USNRC, and the analysis results of design characteristics, aging mechanisms, and operating experiences of RVIs in domestic and international NPPs. Consequently, the developed review guide for PSR of RVIs is expected to contribute an overall strategy and standard for the PSR of RVIs.

금속연료를 사용하는 소듐냉각 고속로의 안전특성 (Safety Characteristics of Metal-Fueled Sodium-Cooled Fast Reactor)

  • 정해용
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.19-30
    • /
    • 2014
  • 지속가능성, 안전성, 핵확산 저항성, 그리고 경제성이 향상된 제4세대 원자로형의 하나로 소듐냉각 고속로가 원자력 선진국을 중심으로 활발히 개발되고 있다. 우리나라가 주도적으로 개발하고 있는 금속연료를 사용하는 소듐냉각고속로는 우수한 피동안전성과 고유안전성을 가지므로 중대사고로의 진전을 조기에 배제할 수 있는 노형으로 평가된다. 또한 소듐냉각고속로는 기존의 사용후핵연료를 재활용하고 자체적으로 재순환 핵주기를 확립함으로써 원자력에너지의 지속성을 향상시킬 수 있다. 이러한 특성으로 인해 많은 나라들이 소듐냉각고속로를 2050년 이전에 도입하는 것을 미래에너지 전략에 포함시키고 있다.

다차원 노심열수력 현상이 소듐고속로 고유안전성에 미치는 영향 (Impact of Multi-dimensional Core Thermal-hydraulics on Inherent Safety of Sodium-Cooled Fast Reactor)

  • 권영민;정해용;하귀석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3175-3180
    • /
    • 2008
  • A metal-fueled pool-type liquid metal fast reactor (LMFR) provides large margins to sodium boiling and fuel damage under accident conditions. The favorable passive safety results are obtained by both a reactivity feedback mechanism in the core and a passive decay heat removal system. Among the various reactivity feedbacks, the ones by a thermal expansion of a radial dimension of the core and by the control rod drivelines are strongly dependent on the flow conditions in the core and the hot pool, respectively. The effects of multidimensional thermal hydraulic characteristics on these reactivity feedbacks are investigated by the system-wide safety analysis code SSC-K with advanced thermal hydraulics models. Particularly a detailed three dimensional thermal hydraulics reactor core model is integrated into SSC-K for use in a whole system analysis of the passive safety aspects of LMR designs. The model provides fuel and cladding temperatures for every fuel pin in a reactor and coolant temperatures for every coolant sub-channel in the reactor.

  • PDF