• Title/Summary/Keyword: Reactor Modeling

Search Result 348, Processing Time 0.026 seconds

Nuclear Reactor Modeling in Load Following Operations for UCN 3 with NARX Neural Network - (NARX 신경회로망을 이용한 부하추종운전시의 울진 3호기 원자로 모델링)

  • Lee, Sang-Kyung;Lee, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.21-23
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup rates when control rod and boron were adjusted in load following operations. Data of UCN 3 were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and seems to be utilized as a handy tool for the use of a plant simulation.

  • PDF

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF

A study on the analysis of bipolar packed-bed electrode reactor for complex reactions (복잡반응에 대한 복극성 고정층 전극반응기 해석)

  • Kim Hark-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 1999
  • A mathematical analysis of bipolar electrode reactor model for complex electrochemical reactions could estimate total current from time-concentration data, which coincided well with experimental total current data. Thus behaviour of bipolar electrode reactor could be described by a proposed simulation model. This paper demonstrates how such a model can be used a useful tool in the design for pilot plant experimentation.

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls

  • Nagender, T.;Parulekar, Y.M.;Rao, G. Appa
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.41-54
    • /
    • 2019
  • Reinforced Concrete (RC) shear walls are widely used in Nuclear power plants as effective lateral force resisting elements of the structure and these may experience nonlinear behavior for higher earthquake demand. Short shear walls of aspect ratio less than 1.5 generally experience combined shear flexure interaction. This paper presents the results of the displacement-controlled experiments performed on six RC short shear walls with varying aspect ratios (1, 1.25 and 1.5) for monotonic and reversed quasi-static cyclic loading. Simulation of the shear walls is then carried out by Finite element modeling and also by macro modeling considering the coupled shear and flexure behaviour. The shear response is estimated by softened truss theory using the concrete model given by Vecchio and Collins (1994) with a modification in softening part of the model and flexure response is estimated using moment curvature relationship. The accuracy of modeling is validated by comparing the simulated response with experimental one. Moreover, based on the experimental work a multi-linear hysteretic model is proposed for short shear walls. Finally ultimate load, drift, ductility, stiffness reduction and failure pattern of the shear walls are studied in details and hysteretic energy dissipation along with damage index are evaluated.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Experimental validation of a nuclear forensics methodology for source reactor-type discrimination of chemically separated plutonium

  • Osborn, Jeremy M.;Glennon, Kevin J.;Kitcher, Evans D.;Burns, Jonathan D.;Folden, Charles M. III;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.384-393
    • /
    • 2019
  • An experimental validation of a nuclear forensics methodology for the source reactor-type discrimination of separated weapons-useable plutonium is presented. The methodology uses measured values of intra-element isotope ratios of plutonium and fission product contaminants. MCNP radiation transport codes were used for various reactor core modeling and fuel burnup simulations. A reactor-dependent library of intra-element isotope ratio values as a function of burnup and time since irradiation was created from the simulation results. The experimental validation of the methodology was achieved by performing two low-burnup experimental irradiations, resulting in distinct fuel samples containing sub-milligram quantities of weapons-useable plutonium. The irradiated samples were subjected to gamma and mass spectrometry to measure several intra-element isotope ratios. For each reactor in the library, a maximum likelihood calculation was utilized to compare the measured and simulated intra-element isotope ratio values, producing a likelihood value which is proportional to the probability of observing the measured ratio values, given a particular reactor in the library. The measured intra-element isotope ratio values of both irradiated samples and its comparison with the simulation predictions using maximum likelihood analyses are presented. The analyses validate the nuclear forensics methodology developed.

Performance analysis modeling of axial direction direct flame rotary kiln reactors (축방향 직접화염 가열방식 로터리킬른 성능모형)

  • Hahn, Taekjin;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.59-60
    • /
    • 2013
  • Rotary kiln furnace is one of the most widely used gas-solid reactors in the industrial field. Although the rotary kiln is a versatile system and has different size, approach to the reactor modeling can be generalized in terms of flow motion of the solid and gas phase, heat transfer and chemical reactions on purpose. In this paper, a performance analysis example case of axial direction direct flame rotary kiln is introduced.

  • PDF

Conventional Fluid Dynamics and CFD Modeling for the Systematic Analysis of the Inside Flow of the Fischer-Tropsch Packed Bed Reactor (전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링)

  • Kim, Hyunseung;Cho, Jaehoon;Hong, Gi Hoon;Moon, Dong Ju;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.65-77
    • /
    • 2016
  • Modeling for complex reacting flow in Fischer-Tropsch reactor is one of the challenges in the field of Computational Fluid Dynamics (CFD). It is hard to derive each and every reaction rate for all chemical species because Fisher-Tropsch reaction produces many kinds of hydrocarbons which include lots of isomers. To overcome this problem, after analyzing the existing methodologies for reaction rate modeling, non-Anderson-Schulz-Flory methodology is selected to model the detailed reaction rates. In addition, the inside flow has feature of multi-phase flow, and the methodologies for modeling multi-phase flow depend on the interference between the phases, distribution of the dispersed phase, flow pattern, etc. However, existing studies have used a variety of inside flow modeling methodologies with no basis or rationale for the feasibility. Modeling inside flow based on the experimental observation of the flow would be the best way, however, with limited resources we infer the probable regime of inside flow based on conventional fluid dynamics theory; select the appropriate methodology of Mixture model; and perform systematic CFD modeling. The model presented in this study is validated through comparisons between experimental data and simulation results for 10 experimental conditions.

Preliminary Thermal-Hydraulic Analysis of the CANDU Reactor Moderator Tank using the CUPID Code (CUPID 코드를 이용한 CANDU 원자로 칼란드리아 탱크 내부유동 열수력 예비 해석)

  • Choi, Su Ryong;Lee, Jae Ryong;Kim, Hyoung Tae;Yoon, Han Young;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.95-105
    • /
    • 2014
  • The CUPID code has been developed for a transient, three-dimensional, two-phase flow analysis at a component scale. It has been validated against a wide range of two-phase flow experiments. Especially, to assess its applicability to single- and two-phase flow analyses in the Calandria vessel of a CANDU nuclear reactor, it was validated using the experimental data of the 1/4-scaled facility of a Calandria vessel at the STERN laboratory. In this study, a preliminary thermal-hydraulic analysis of the CANDU reactor moderator tank using the CUPID code is carried out, which is based on the results of the previous studies. The complicated internal structure of the Calandria vessel and the inlet nozzle was modeled in a simplified manner by using a porous media approach. One of the most important factors in the analysis was found to be the modeling of the tank inlet nozzle. A calculation with a simple inlet nozzle modeling resulted in thermal stratification by buoyance, leading to a boiling from the top of the Calandria tank. This is not realistic at all and may occur due to the lack of inlet flow momentum. To improve this, a new nozzle modeling was used, which can preserve both mass flow and momentum flow at the inlet nozzle. This resulted in a realistic temperature distribution in the tank. In conclusion, it was shown that the CUPID code is applicable to thermal-hydraulic analysis of the CANDU reactor moderator tank using the cost-effective porous media approach and that the inlet nozzle modeling is very important for the flow analysis in the tank.

Modeling and analysis of an LDPE autoclave reactor with axial dispersion

  • Park, Seung-Koo;Wi, Jeong-Ho;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1693-1698
    • /
    • 1991
  • An axial dispersion model is developed for the slim reactor employed in the LDPE autoclave process so that imperfect mixing caused by large L/D ratio (10-20) may be quantified by Peclet number. The model is then used to investigate the effect of mixing on the reactor performance represented by the monomer conversion, the reactor temperature, the molecular weight, and the polydispersity. In addition, the existence of steady state multiplicity is identified with the initiator feed concentration or the feed temperature as the bifurcation parameter. The effects of the initiator feed concentration and the feed temperature are also examined.

  • PDF