DOI QR코드

DOI QR Code

Conventional Fluid Dynamics and CFD Modeling for the Systematic Analysis of the Inside Flow of the Fischer-Tropsch Packed Bed Reactor

전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링

  • Kim, Hyunseung (Department of Chemical Engineering, Myongji University) ;
  • Cho, Jaehoon (Department of Chemical Engineering, Myongji University) ;
  • Hong, Gi Hoon (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Moon, Dong Ju (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Shin, Dongil (Department of Chemical Engineering, Myongji University)
  • Received : 2016.08.11
  • Accepted : 2016.08.31
  • Published : 2016.08.30

Abstract

Modeling for complex reacting flow in Fischer-Tropsch reactor is one of the challenges in the field of Computational Fluid Dynamics (CFD). It is hard to derive each and every reaction rate for all chemical species because Fisher-Tropsch reaction produces many kinds of hydrocarbons which include lots of isomers. To overcome this problem, after analyzing the existing methodologies for reaction rate modeling, non-Anderson-Schulz-Flory methodology is selected to model the detailed reaction rates. In addition, the inside flow has feature of multi-phase flow, and the methodologies for modeling multi-phase flow depend on the interference between the phases, distribution of the dispersed phase, flow pattern, etc. However, existing studies have used a variety of inside flow modeling methodologies with no basis or rationale for the feasibility. Modeling inside flow based on the experimental observation of the flow would be the best way, however, with limited resources we infer the probable regime of inside flow based on conventional fluid dynamics theory; select the appropriate methodology of Mixture model; and perform systematic CFD modeling. The model presented in this study is validated through comparisons between experimental data and simulation results for 10 experimental conditions.

Fischer-Tropsch 반응기 내 복잡한 반응과 흐름을 상세히 모델링하는 것은 CFD 분야에 있어 도전적 과제이다. Fischer-Tropsch 반응은 여러 가지 탄소수를 가진 탄화수소들을 만들어내는데, 탄화수소에는 무수히 많은 이성질체가 존재하는 이유로 모든 화학종에 대해서 각각의 반응속도식을 도출해 적용하는 것은 어렵다. 이의 극복을 위해 기존 연구들에서 사용된 반응속도식 모델링 방법론들을 분석한 뒤, 화학종별 상세한 반응속도식 적용을 위해 non-Anderson-Schulz-Flory 방법론을 선정하여 상세 모델링을 진행하였다. 또한 반응 특성상 다상 흐름 형태를 띠는데, 다상 흐름 모델링의 경우 상간의 간섭이나 분산상의 분포 및 유동 형태 등에 따라 적합한 모델링 방법론이 다르다. 그러나 기존 연구들에서는 타당성에 대한 논의나 근거 제시 없이 각양각색의 내부 흐름 모델링 방법론이 사용되고 있다. 실험을 통해 내부 흐름 형태를 관찰한 뒤 유동 형태에 따른 모델링을 진행하는 것이 최선이나, 자원 여건상 어려움이 있어, 본 연구에서는 전통적인 유체역학 이론에 근거해 내부 흐름 형태를 먼저 추론하고 Mixture 모델 방법론을 선정하여 체계적인 CFD 모델링을 진행함으로써, 사용된 방법론에 대한 근거를 마련하고자 하였다. 10가지 실험조건에서 진행한 실험 결과와 본 연구의 시뮬레이션 결과를 비교하였으며, 이를 통해 본 연구가 제안하는 체계적 모델링 방법론의 타당성을 입증하였다.

Keywords

References

  1. T. S. Lee, Numerical Modeling and Simulation of Fischer-Tropsch Packed-Bed Reactor and Its Thermal Management, Ph. D Thesis, University of Florida, (2011)
  2. Davis, B. H., "Fischer-Tropsch synthesis: comparison of performances of iron and cobalt catalysts", Ind. Eng. Chem. Res. 46(26), 8938-8945, (2007) https://doi.org/10.1021/ie0712434
  3. D. Leckel, "Diesel Production from Fischer-Tropsch: The Past, the Present, and New Concepts", Energy Fuels, 23, 2342-2358, (2009) https://doi.org/10.1021/ef900064c
  4. Joseph W. Pratt, A Fischer-Tropsch synthesis Reactor Model framework for Liquid Biofuels Production, Sandia National Laboratories, Livermore, (2012)
  5. M.R. Rahimpour and H. Elekaei, "Optimization of a novel combination of fixed and fluidized-bed hydrogen-permselective membrane reactors for Fischer-Tropsch synthesis in GTL technology", Chemical Engineering Journal, 152, 543-555, (2009) https://doi.org/10.1016/j.cej.2009.05.016
  6. A. R. Miroliaei et al., "Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor", Jounal of Industrial and Engineering Chemistry, 18, 1912-1920, (2012) https://doi.org/10.1016/j.jiec.2012.05.003
  7. M. S. Shin et al. "Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor", Chemical Engineering Journal, 234, 23-32, (2013) https://doi.org/10.1016/j.cej.2013.08.064
  8. S. Shahhosseini, S. Alinia and M. Irani, "CFD Simulation of Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL Technology", World Academy of Science, Engineering and Technology, 36, 585-589, (2009)
  9. N. Moazami et al., "Modelling of a fixed bed reactor for Fischer-Tropsch synthesis of simulated N2-rich syngas over Co/SiO2: Hydrocarbon production", Fuel, 154, 140-151, (2015) https://doi.org/10.1016/j.fuel.2015.03.049
  10. M. Irani, "Experimental and CFD Modeling of Bench-scale GTL Packed-Bed Reactor based on FE/CU Catalyst", Petroleum & Coal, 56(1), 62-73, (2014)
  11. M. Rahmati, "Rate Equation for the Fischer-Tropsch Reaction on a Promoted Iron Catalyst", The Canadian Journal of Chemical Enginnering, 79(5), 800-804, (2001) https://doi.org/10.1002/cjce.5450790515
  12. C. Maretto and R. Krishna, "Modelling of a bubble column slurry reactor for Fischer Tropsch synthesis", Catalyst Today, 52, 279-289, (1999) https://doi.org/10.1016/S0920-5861(99)00082-6
  13. G. Gumuslu and Ahmet K. Avci, "Parametric Analysis of Fischer-Tropsch Synthesis in a Catalytic Microchannel Reactor", AIChE, 58, 227-235, (2012) https://doi.org/10.1002/aic.12558
  14. A. D. Klerk, Fischer-Tropsch Refining, WILEY-VCH, Singapore, (2011)
  15. I. Yates and C. N. Satterfield, "Intrinsic Kinetics of the Fischer-Tropsch Synthesis on a Cobalt Catalyst", Energy & Fuels, 5, 168-173, (1991) https://doi.org/10.1021/ef00025a029
  16. A. Jess and C. Kern, "Modeling of Multi-Tubular Reactors for Fischer-Tropsch Synthesis", Chem. Eng. Technol., 32, 1164-1175, (2009) https://doi.org/10.1002/ceat.200900131
  17. N. O. Elbashir and C. B. Roberts, "Enhanced Incorporation of ${\alpha}$-Olefins in the Fischer-Tropsch Synthesis Chain-Growth Process over an Alumina-Supported Cobalt Catalyst in Near-Critical and Supercritical Hexane Media", Ind. Eng. Chem., 44, 505-521, (2005) https://doi.org/10.1021/ie0497285
  18. Maxey, M. R. and RILEY, J. J., "Equation of motion for a small rigid sphere in a non-uniform flow", Phys. Fluids, 26, 883-889, (1983) https://doi.org/10.1063/1.864230
  19. Shannak, B., Al-Shannag, M., and Al-Anber, Z.A., "Gas-liquid pressure drop in vertically wavy 90 degree bend", Experimental Thermal and Fluid Science, 33, 340-347, (2009) https://doi.org/10.1016/j.expthermflusci.2008.10.004
  20. Churchill, S. W., and Usagi, R. "A General Expression for the Correlation of Rates of Heat Transfer and Other Phenomena", AIChE J., 18(6), 1121-1138, (1972) https://doi.org/10.1002/aic.690180606
  21. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles, Academic Press, New York/London, (1978)
  22. Center for Chemical Process Safety, Guidelines for Pressure Relief and Effluent Handling Systems, WILEY, New York, (1998)
  23. Crowe, C. T., Sommerfeld, M., and Tsuji, Y., Multiphase Flow with Droplets and Particles, CRC Press, Boca Raton/Florida, (1998)
  24. B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, (2001)
  25. F.A.L. Dullien, Porous Media. Fluid Transport and Pore Structure, 2nd ed., Academic Press Inc., San Diego, (1992)
  26. M.Kaviany, Principles of Heat Transfer in Porous Media, Springer-Verlag, Berlin, (1991)