• Title/Summary/Keyword: Reactor Head

Search Result 143, Processing Time 0.023 seconds

Integrity of the Reactor Vessel Support System for a Postulated Reactor Vessel Closure Head Drop Event

  • Kim, Tae-Wan;Lee, Ki-Young;Lee, Dae-Hee;Kim, Kang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.576-582
    • /
    • 1996
  • The integrity of reactor vessel support system of the Korean Standard Nuclear Power Plant (KSNPP) is investigated for a postulated reactor vessel closure head drop event. The closure head is disassembled from the reactor vessel during refueling process or general inspection of reactor vessel and internal structures, and carried to proposed location by the head lift rig. A postulated closure head drop event could be anticipated during closure head handling process. The drop event may cause an impact load on the reactor vessel and supporting system. The integrity of the supporting system is directly relevant to that of reactor vessel and reactor internals including fuels. Results derived by elastic impact analysis, linear and non-linear buckling analysis and elasto-plastic stress analysis of the supporting system implied that the integrity of the reactor vessel supporting system is intact for a postulated reactor vessel closure head drop event.

  • PDF

A Feasibility Test for Flaw Detection in Overlay Weld of Reactor Upper Head Penetration Using Time of Flight Diffraction Technique (TOFD 기법을 활용한 원자로 상부헤드관통부 오버레이 용접부 결함 검출 가능성 평가)

  • Lee, Jeong Seok;Kim, Jin Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • A Failure or degradation of reactor upper head penetration is a recurring problem due to long term operation at nuclear power plants. And a flaw in the reactor upper head penetration has caused unplanned plant shutdown for repair as well as high economic impact on the plants. Consequently, a detection of flaws is of the utmost importance. Prior to the replacement of reactor upper head penetration, some utilities have repaired the flaws of reactor upper head penetration generated by overlay weld. Until now, only the base metal in reactor upper head penetration has been inspected according to 10 CFR 50.55a and ASME code case N-729-1. Accordingly, it is difficult to detect manufacturing defects and repair defects in overlay weld. This paper presents a case study on the application of Time of Flight Diffraction technique for reactor head penetration mockup with artificial flaws in overlay weld. This study offers a way to understand the flaws detected in reactor upper head penetration overlay weld.

A Feasibility Study for Flaw Detection in J-groove Weld of Reactor Upper Head Penetration Using Time of Flight Diffraction UT Technique (TOFD UT 기법을 활용한 원자로 상부헤드관통부 J-groove 용접부 결함 검출 가능성 평가)

  • Lee, Jeong Seok;Lee, Tae Hun;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.1-5
    • /
    • 2015
  • A failure or degradation of reactor upper head penetration is a troublesome problem at Nuclear Power Plants. A flaw in the reactor upper head penetration can result in unplanned plant shutdown for repair, and cause serious economic losses on the plants. Consequently, a detection of flaws is a matter of more importance. Until now, only the base metal, not including J-groove weld, in reactor upper head penetration has been inspected in accordance with 10 CFR 50.55a and ASME code case N-729-1 requirements. Accordingly, it is rather difficult to detect manufacturing defects and repair defects in J-groove weld. This paper presents a case study on the application of Time of Flight Diffraction UT technique to examine the J-groove weld in reactor head penetration using reactor head penetration mockup with artificial flaws. We expect that this study result will offer a way to understand the non-destructive examination technology for J-groove weld in reactor upper head penetration.

ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN THE COVER GAS REGION OF SODIUM-COOLED FAST REACTOR (소듐냉각 고속로의 커버가스 영역에서 열유동 해석)

  • Lee, Tae-Ho;Kim, Seong-O;Hahn, Do-Hee
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 2008
  • The reactor head of a sodium-cooled fast reactor KALIMER-600 should be cooled during the reactor operation in order to maintain the integrity of sealing material and to prevent a creep fatigue. Analyzing turbulent natural convection flow in the cover gas region of reactor vessel with the commercial CFD code CFX10.0, the cooling requirement for the reactor head and the performance of the insulation plate were assessed. The results showed that the high temperature region around reactor vessel was caused by the convective heat transfer of Helium gas flow ascending the gap between the insulation plate and the reactor vessel inner wall. The insulation plate was shown to sufficiently block the radiative heat transfer from pool surface to reactor head to a satisfactory degree. More than $32.5m^3$/sec of cooling air flow rate was predicted to maintain the required temperature of reactor head.

Development of Reactor Vessel Head Penetration Performance Demonstration System in Korea (국내 원자로 상부헤드관통관 기량검증 기술개발)

  • Kim, Yongsik;Yoon, Byungsik;Yang, Seunghan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2014
  • There were many flaw issues of reactor vessel head penetration in USA fleets. USNRC issued 10CFR50.55a to implement reactor vessel head penetration ultrasonic examination performance demonstration(PD) in US for enhancement of inspection reliability. After September 2009, all US utilities inspected their RVHP with PD qualified system. Korea Hydro and Nuclear Power Company(KHNP) have developed reactor vessel head penetration performance demonstration system for ultrasonic test to apply for pressurized light-water reactor power plants in accordance with 10CFR50.55a since September 2011. RVHP configuration surveying and analysis, code requirement analysis, and performance demonstration specimen design were performed up to this day. Fingerprinting of manufactured specimen, development of test data management program, development of operation procedure, input of flawed data, and development of final report will be performed for the next step. This paper describes the development status of the performance demonstration system for reactor vessel head penetration ultrasonic examination in Korea.

Tele-Operated Mobile Robot for Visual Inspection of a Reactor Head

  • Choi, Chang-Hwan;Jeong, Kyung-Min;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2063-2065
    • /
    • 2003
  • The control rod drive mechanisms in a reactor head are arranged too narrow for a human worker to approach. Moreover, the working environment is in high radiation area. In order to inspect defections in the surfaces of the reactor head and welding parts, a visual inspection device that can approach such a narrow and high radiation area is required. This paper introduces a tele-operated mobile robot for visual inspection of a reactor head, which has pan/tilt camera, fixed rear camera, ultrasonic collision detection system, and so on. Moreover, the host controller and digital video logging system are developed and integrated control software is also developed. The robot is operated by a wireless control, which gives flexibility for the inspection.

  • PDF

Evaluation of Reactor Internals Integrity due to 5.5m Concentric Free Fall of KSNP+ Reactor Vessel Closure Head (KSNP+ 원자로덮개 5.5m 수직 낙하 시 원자로내부구조물 건전성 평가)

  • Namgyng, Ihn;Jeong, Seung-Ha;Lee, Dae-Hee;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1358-1363
    • /
    • 2003
  • Due to the application of Integrated Head Assembly (IHA) in KSNP+ reactor design, an investigation of reactor internals integrity is carried out to assure that the adoption of IHA does not affect the safety of reactor operation. One of the postulated accident events is the R.V. closure head fall from 5.5m high directly above the reactor vessel that may occur during the refueling operation. The analysis model consists of lumped mass elements of the entire reactor vessel and internals. Because of extreme load, separate elastic-plastic analyses are done for the members that undergo plastic deformation. The analysis verified that the stresses of the reactor internals and the fuel assemblies are within the bound of allowable stress limits and the integrity of the fuel assemblies is maintained.

  • PDF

Open Die Forging of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 자유단조)

  • Kim D. Y.;Kim Y. D.;Kim D. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.565-569
    • /
    • 2005
  • Reactor Vessel is one of the most important structural parts of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the open die forging process and manufacturing experience of large head forgings which can be used for the reactor vessel of 1,000MW nuclear power plant.

Development Trend of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 개발동향)

  • Kim D. K.;Kim D. Y.;Kim Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.06a
    • /
    • pp.131-139
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the development trend of the open die forging process and manufacturing experience of large head forgings which canl be used for the reactor vessel of nuclear power plant.

  • PDF

Open Die Forging of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 자유단조)

  • Kim D. Y.;Kim Y. D.;Kim D. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.397-400
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the open die forging process and manufacturing experience of large head forgings which cant be used for the reactor vessel of 1,000MW nuclear power plant.

  • PDF