• Title/Summary/Keyword: Reactivity ratio

Search Result 251, Processing Time 0.025 seconds

He Emissions from a Gaseous Fueled Engine with Various Design Parameters (가스연료엔진에서 설계변수에 따른 HC 배출 특성)

  • Kim, Chang-Up;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.183-188
    • /
    • 1999
  • For two engine design parameters; compression ratio and intake swirl ratio, measurement of concentrations of hydrocarbon species has been made as a function of various air-fuel ratio in order to investigate the ozone formation of HC emissions from LPG fuel. Higher compression ratio gave lower SR values due to larger aIkan species and higher BSR values because of larger NMHC generation. Swirl ratio did not affect HC emissions and ozone formation. For ${\lambda}=1.1{\sim}1.2$, higher SR values resulted from the species of aIken which has higher MIRs were highly produced. Leaner mixture showed lower SR values due to the increase of the aIkan which has a lower MIR.

  • PDF

The Effect of the Structural State of Silica on the Pozzolanic Reactivity (Silica의 형태가 Pozzolan 반응성에 미치는 영향)

  • 한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 1974
  • The hydration at $23^{\circ}C$ between $Ca(OH)_2$ and siliceous materials with various compositions of silica gel and quartz were studied in paste state, and also diatomite was empolyed as another form of silica. The effect of the structural state of silica on the pozzolanic reactivity was investigated by X-ray, DTA, electron microscopy, and chemical analysis. The results obtained were as follows. (1) The molar ratio of $Ca(OH)_2$ to silica gel(C/Sg) being changed in 0.49, 0.81 and 1.22, the free $Ca(OH)_2$ was disappeared within six hours, three days and two weeks respectively and ill-crystallized CSH(I) was formed. However, in the case fo molar ratio of C/Sg=2.45, almost lime was remained uncombinedly after twenty four weeks yet. (2) Though the molar ratio C/Sg of diatomite was 0.71, the hydration was stabilized at three weeks and the result exhibited very peculiar characteristics from silica gel. (3) Pozzolanic reactivity of quartz was negligible, but $\alpha$-cristobalite in diatomite showed appreciable reactivity. (4) The thermal curves showed the exothermic peaks in the range 830 to $930^{\circ}C$ and lower broad peaks at high temperature in the initial steps of hydration, transfered to lower temperature with sharp peaks by proceeding of hydration. (5) The samples containing more silica gel exhibited higher pozzolanic reactivity and martar strength, but the diatomite gave remarkable result for them and they were matched to the strength development rate.

  • PDF

The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters (여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구)

  • 김창업;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.

Properties of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde to Urea Mole Ratios

  • Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.67-75
    • /
    • 2007
  • As a part of abating the formaldehyde emission of urea-formaldehyde (UF) resin adhesive by lowering formaldehyde to urea (F/U) mole ratio, this study was conducted to investigate properties of UF resin adhesive with different F/U mole ratios. UF resin adhesives were synthesized at different F/U mole ratios of 1.6, 1.4, 1.2, and 1.0. Properties of UF resin adhesives measured were non-volatile solids content, pH level, viscosity, water tolerance, specific gravity, gel time and free formaldehyde content. In addition, a linear relationship between non-volatile solids content and sucrose concentration measured by a refractometer was established for a faster determination of the non-volatile solids content of UF resin. As F/U mole ratio was lowered, non-volatile solids content, pH, specific gravity, water tolerance, and gel time increased while free formaldehyde content and viscosity were decreased. These results suggested that the amount of free formaldehyde strongly affected the reactivity of UF resin. Lowering F/U mole ratio of UF resin as a way of abating formaldehyde emission consequently requires improving its reactivity.

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.

Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis

  • Park, Jinsu;Lee, Hyunsuk;Tak, Taewoo;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.6-16
    • /
    • 2017
  • This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the $2{\times}2$ checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

Copolymerization of 4′-vinylbenzo-15-crown-5 with Di(ethylene glycol) Ethyl Ether Acrylate

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 2002
  • Radical copolymerization behavior of 4'-vinylbenzo-15-crown-5, a vinyl monomer having a pendant 15-membared crown ether unit (VCE) with di(ethylene glycol) ethyl ether acrylate (DEGEEA) was carried out in toluene solution using 2,2-azobisisobutyronitrile (AIBN) as an initiator. The copolymers were characterized by means of FT-IR, $^1{H-NMR}$, and $^{13}{C-NMR}$ . The reactivity ratio of VCE and DEGEEA, determined by Fineman-Ross and Kelen-Tudos method, gave values 0.55 for VCE, and 0.11 for DEGEEA respectively.

Characteristics of Co-Combustion of Korean Anthracite with Bituminous Coal in a Circulating Fluidized Bed (순환유동층에서 유.무연탄 혼소 특성)

  • Lee, J.M.;Kim, J.S.;Lee, E.M.
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The characteristics of co-combustion of Korean anthracite and bituminous coal was determined in a TGA and a lab-scale CFB reactor. The combustion reactivity of Korean anthracite (E = 51.2 kcal/mol) was much lower than that of bituminous coal (E = 14.5 kcal/mol). As the addition amount of the bituminous coal into the anthracite was increased, the reactivity of the anthracite was found to be improved. The effluent rate of the emission gases from the CFB reactor was not changed appreciably when each coal burned. As the bituminous coal was added, however, the effluent rate of the emissions was increased. The unburned carbon in fly ash from the CFB reactor was decreased with increasing the ratio of bituminous coal in co-combustion. But as the ratio of the bituminous coal was larger than 40 %, the combustion reactivity was not increased any more.

  • PDF

Effects of Ball Milling for Elemental Powders on Ni-Al based Intermetallics Coating on Mild Steel through Induction Heating Process (Ni-Al계 금속간화합물의 고주파 연소합성코팅에 미치는 볼 밀링의 영향)

  • Lee, Han-Young;Park, Won-Kyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2017
  • Ball milling of elemental powders in advance and using an induction heating system for intermetallic coatings are known to enhance the reactivity of combustion synthesis. In this work, the effects of simultaneously applying these two incentive methods on the properties of intermetallic coatings are studied. Ni-Al powder compacts ball-milled with three different ball-to-powder weight ratio mixtures are synthesized and coated on mild steel by combustion synthesis in an induction heating system. Consequently, similar to an electrical heating system, the positive effects of ball milling on the combustion synthesis are confirmed in the induction heating system. The enhancement in synthetic reactivity achieved by applying the two incentive methods at the same time is greater than that by applying each incentive method separately. In particular, the enhancement is remarkable at low reaction temperature. However, there are limitations to improving the reactivity by simultaneously applying the two incentive methods to the combustion synthesis, unlike the reaction temperature. The microstructure and hardness of the coating layer are both influenced by the ball-charging ratio employed in the ball-milling process.

Property Optimization of Ni/CGO Cermet Anodes (Ni/CGO Cermet Anode의 특성 최적화)

  • 최종혁;김남진;이덕열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.94-102
    • /
    • 1999
  • Ni/CGO cermets were fabricated as the anode for SOFC which uses CGO as the electrolyte. And their electrical conductivity, electrochemical reactivity, and thermal expansion coefficient were optimized through the variation of NiO/CGO particle size ration and their composition. The electrical conductivity of the cermet was increased abruptly at a certain Ni content and the percolation concentration was decreased with the decreasing particle size ratio. Anodic overpotential was also decreased with the decreasing particle size ratio. For a fixed ratio it showed a minimum value at 50 wt.%. Thermal expansion coefficient was increased monotonically with increasing Ni contents, however it did not depend on the size ratio. With three properties taken into account, the cermet of particle size ration of 0.03 and composition of 50 wt.% was judged to be optimal as the anode.

  • PDF