• Title/Summary/Keyword: Reactive transport

Search Result 134, Processing Time 0.024 seconds

AC loss dependency on the arrangement of the HTS wires in the current limiting module for SFCL (초전도 한류모듈 내 고온초전도 선재 배치에 따른 교류손실 변화)

  • Kim, W.S.;Yang, S.E.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.9-12
    • /
    • 2012
  • Usually, the AC loss from the superconducting element of an SFCL due to the load current is very small because it is composed of the combination of bifilar windings with very small reactance. Although the AC loss is small enough, we should be albe to predict for the design and control of the cryogenic system. In fact, an SFCL for the transmission voltage class may not generate ignorable AC loss because of the inevitable space between the HTS wires for the high voltage insulation and cryogenic efficiency. To measure the AC loss dependency on the space between the 2G HTS wires with the width of 4.4 mm, we prepared an experimental setup which could adjust the distance between the wires. We used two 500-mm length HTS wires in parallel and applied the current in the opposite direction for each wire to simulate a part of a current limiting module for a high voltage SFCL. We also put two couples of voltage taps at the ends of each wire and a cancel coil in the voltage measurement circuit to compensate the reactive component from the voltage taps. In this condition, we varied the distance between the wires to investigate the change of the transport current loss. A similar experimental study with HTS wire with the width of 12 mm is now in progress.

Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy

  • Song, Seon Beom;Jang, So-Young;Kang, Hyun Tae;Wei, Bie;Jeoun, Un-woo;Yoon, Gye Soon;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.503-514
    • /
    • 2017
  • Nicotinamide (NAM) plays essential roles in physiology through facilitating $NAD^+$ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of $NAD^+/NADH$ and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (${\Delta}_{{\Psi}m}$); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases ${\Delta}_{{\Psi}m}$. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and ${\Delta}_{{\Psi}m}$ were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased ${\Delta}_{{\Psi}m}$ via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular $NAD^+$ redox modulation, and emphasized the importance of the $NAD^+/NADH$ ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.

Improving TCP-Vegas Performance over Mobile Ad-hoc Networks (이동 애드혹 네트워크에서의 TCP-Vegas 성능향상 기법)

  • Bae Han-Seok;Song Jeom-Ki;Kim Dong-Kyun;Park Jung-Soo;Kim Hyoung-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.221-231
    • /
    • 2006
  • TCP is needed as a transport protocol to provide reliable end-to-end message delivery for MANETs in order to achieve a smooth integration with the fixed Internet. Particularly, TCP has its variants, namely TCP-Reno and TCP-Vegas. However, there has been no research work on extensive performance comparison of TCP-Reno and TCP-Vegas over AODV and OLSR. This paper is the first trial to perform the research by using ns-2 simulator. Through the extensive simulations, we found that which to select among routing protocols is more important than which to select among TCP variants, because the performance difference between TCP-Reno and TCP-Vegas over uy selected routing protocol is not so much outstanding. Particularly, TCP-Vegas relies on an accurate BaseRTT estimation in order to decide the sending rate of a TCP Sender. However, it cannot be directly applied to MANET because a route change makes the Base an used over a Previous Path obsolete. Therefore, we propose a technique for improving the performance of TCP-Vegas by considering the route change, and show the performance improvement through simulation study.

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Production and Characterization of Monoclonal Antibodies against Human Ceruloplasmin

  • Eum, Won-Sik;Choi, Hee-Soon;Kim, Dae-Won;Jang, Sang-Ho;Choi, Soo-Hyun;Kim, So-Young;Park, Jin-Seu;Kang, Jung-Hoon;Cho, Sung-Woo;Kwon, Oh-Shin;Hwang, In-Koo;Yoo, Ki-Yeon;Kang, Tae-Cheon;Won, Moo-Ho;Choi, Soo-Young
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.71-76
    • /
    • 2005
  • Ceruloplasmin (CP) is the major plasma antioxidant and copper transport protein. Monoclonal antibodies (mAbs) against human CP were produced and characterized. A total of five hybridoma cell lines were established (CP2, CP10, CP20, CP25, CP30). From the epitope mapping analysis, two subgroups of mAbs recognize different peptide fragments were identified. When the purified CP was incubated with the mAbs, the ferroxidase activity of CP was inhibited up to a maximum 57%. Immunoblotting with various tissue homogenates indicated that all the mAbs specifically recognize a single protein band of 130 kDa. They also appear to be extensively cross-reactive among different mammalian including human and avian sources. These results demonstrated that only one type of immunologically similar CP is present in all of the mammalian tissues including human. The CP mAbs could be of great benefit to design the diagnostic kit for CP-related diseases such as Wilson's disease.

Involvement of Oxidative Stress and Poly(ADP-ribose) Polymerase Activation in 3-Nitropropionic Acid-induced Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Young-Jae;Oh, Young-Ah;Jung, Jin-Ah;Im, Hye-In;Koh, Seong-Eun;Maeng, Sung-Ho;Joo, Wan-Seok;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.325-331
    • /
    • 2003
  • 3-Nitropropionic acid (3-NP) inhibits electron transport in mitochondria, leading to a metabolic failure. In order to elucidate the mechanism underlying this toxicity, we examined a few biochemical changes possibly involved in the process, such as metabolic inhibition, generation of reactive oxygen species (ROS), DNA strand breakage, and activation of Poly(ADP-ribose) polymerase (PARP). Exposure of SK-N-BE(2)C neuroblastoma cells to 3-NP for 48 h caused actual cell death, while inhibition of mitochondrial function was readily observed when exposed for 24 h to low concentrations (0.2${\sim}$2 mM) of 3-NP. The earliest biochemical change detected with low concentration of 3-NP was an accumulation of ROS (4 h after 3-NP exposure) followed by degradation of DNA. PARP activation by damaged DNA was also detectable, but at a later time. The accumulation of ROS and DNA strand breakage were suppressed by the addition of glutathione or N-acetyl-L-cysteine (NAC), which also partially restored mitochondrial function and cell viability. In addition, inhibition of PARP also reduced the 3-NP-induced DNA strand breakage and cytotoxicity. These results suggest that oxidative stress and activation of PARP are the major factors in 3-NP-induced cytotoxicity, and that the inhibition of these factors may be useful in protecting neuroblastoma cells from 3-NP-induced toxicity.

Characteristics of Atmospheric Speciated Gaseous Mercury in Chuncheon, Korea (춘천시 대기 중 가스상 수은 종 농도 특성에 관한 연구)

  • Gan, Sun-Yeong;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.382-391
    • /
    • 2009
  • Atmospheric speciated mercury concentrations including total gaseous mercury (TGM) and reactive gaseous mercury (RGM) were measured in Chuncheon from March 2006 to November 2008. Average concentrations were 2.10 ${\pm}$ 1.50 ng/$m^3$ and 3.00 ${\pm}$ 3.14 pg/$m^3$ for TGM and RGM, respectively. RGM concentrations were higher during daytime than nighttime probably because of high photochemical activities. We found that RGM concentration considerably increased as ozone increased when fog occurred, indicating that ozone was the important oxidant for $Hg^0$ in aqueous phase. TGM concentration showed positive correlations with CO and $PM_{10}$ which can transport in long-range, but there was no correlation with $NO_2$. Considering that major source of mercury is combustion process, this result showed that local sources did not significantly impact on TGM concentration in Chuncheon. Five-day backward trajectories were calculated for the samples representing high and low concentrations of TGM, and determined that industrialized area of China including Shenyang and Beijing influenced TGM concentrations in Chuncheon.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF