• 제목/요약/키워드: Reactive power capability

검색결과 109건 처리시간 0.03초

전력계통의 전압안정도 향상을 위한 변전소의 무효전력 제어 연구 (A Study of Reactive power control for voltage stability enhancement in power system)

  • 이현철;박지호;정태영;정기석;이상덕;유형선;백영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.191-192
    • /
    • 2011
  • The transmission capacity has been highlighted as a problem in the power company according to operated heavy loaded of transmission facility. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and many approaches for enhancement of the total transfer capability has been consistently performed. This paper proposes a study on determination of the adequate var sizing of power compensator regarding the transfer capability enhancement in power system. This method was controlled power compensator in substation becasue of the voltage stability. It was simulated power system using EMS peak data.

  • PDF

최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어 (Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault)

  • 박건;김진호;강용철
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System

  • Choi, YunHyuk;Lee, Byongjun;Kim, TaeKyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1502-1507
    • /
    • 2015
  • This paper deals with shunt compensation to eliminate voltage violation and enhance transfer capability, which is motivated towards implementation in the Korean power system. The optimal shunt compensation algorithm has demonstrated its effectiveness in terms of voltage accuracy and reducing the number of actions of reactive power compensating devices. The main shunt compensation devices are capacitor and reactor. Effects of control devices are evaluated by cost computations. The control objective at present is to keep the voltage profile of a key bus within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occurs important event from system. Case studies with metropolitan area of the Korean power system are presented to illustrate the method.

STATCOM과 조상설비를 이용한 풍력단지가 연계된 전력계통의 전압제어 (Voltage Control of Power System Connected to a Wind Farm by Using STATCOM and Reactive Power Compensators)

  • 서규석;박지호
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2737-2743
    • /
    • 2015
  • 풍력발전은 풍력단지가 전력계통과 접속되는 모선의 전압을 유지 또는 제어하기 위한 충분한 무효전력을 공급할 수 있어야 한다. 하지만 풍력단지와 계통 접속점(POI - Point of Interconnection) 모선을 연결하는 선로의 무효전력 손실 때문에 풍력터빈의 무효전력공급은 접속점의 전압을 제어하기에는 불충분하다. 이 문제는 접속점에 STATCOM(Static Synchronous Compensator)과 같은 부수적인 무효전력 보상장치를 설치하여 해결할 수 있다. 본 논문에서 제시하는 STATCOM과 Switched-Shunt, 탭변환 변압기와 같은 기존의 무효전력 보상장치의 협조제어를 사용하면 더욱 효과적으로 접속점 모선의 전압을 제어할 수 있다. 본 논문에서 제시한 방법을 이용하여 초기부하에 대하여 임의의 부하 변동률을 가지는 모의 시스템에 적용한 결과 접속점 모선의 전압강하는 60%이상 개선되었고 부하 모선의 전압은 정격전압의 95%이상을 유지하였다.

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

Improved Reactive Power Sharing for Parallel-operated Inverters in Islanded Microgrids

  • Issa, Walid;Sharkh, Suleiman;Mallick, Tapas;Abusara, Mohammad
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1152-1162
    • /
    • 2016
  • The unequal impedances of the interconnecting cables between paralleled inverters in the island mode of microgrids cause inaccurate reactive power sharing when the traditional droop control is used. Many studies in the literature adopt low speed communications between the inverters and the central control unit to overcome this problem. However, the losses of this communication link can be very detrimental to the performance of the controller. This paper proposes an improved reactive power-sharing control method. It employs infrequent measurements of the voltage at the point of common coupling (PCC) to estimate the output impedance between the inverters and the PCC and then readjust the voltage droop controller gains accordingly. The controller then reverts to being a traditional droop controller using the newly calculated gains. This increases the immunity of the controller against any losses in the communication links between the central control unit and the inverters. The capability of the proposed control method has been demonstrated by simulation and experimental results using a laboratory scale microgrid.

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • 제5권4호
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

IPLAN을 이용한 UPFC 적용 전력시스템의 전압 안정도 측면에서의 융통전력 향상 효과 분석 (A Study on Enhancing the Total Transfer Capability from Voltage Stability Point of View Using UPFC)

  • 이세정;이병하;김정훈;김용학;곽노홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.151-153
    • /
    • 2002
  • Using UPFC(Unified Power Flow Controlled), it is possible to control three parameters(voltage, impedance, and phase angle). The UPFC can generate or absorb reactive power rapidly so as to enhance the transient and voltage stability and also influence the power flow. In this paper, the effects of application of the UPFC to the power system are analyzed from a viewpoint of improving the total transfer capability by enhancing voltage stability. The IPLAN, which is a high level language used with PSS/E program, is employed for evaluating the total transfer capability from a f-V curve.

  • PDF

최대전력수송능력의 확률론적 평가법 (A Probabilistic Evaluation Method on Maximal Flow of Power Systems)

  • 정민화;유수현;이병준;송길영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.911-914
    • /
    • 1998
  • This paper presents an algorithm that evaluates the transfer capability of composite power systems using probabilistic approaches. The reliability indices calculated by using probabilistic method are expected maximal flow, expected transfer capability margin, and expected power not supplied. In this paper, a successive linear programming technique is used to evaluate transfer capability named maximal flow. Physical constraints considered in the maximal flow problem are the limits of toad voltage, line overloading, and real & reactive power generation. Numerical results on IEEE RTS show that the proposed algorithm is effective and useful.

  • PDF

전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구 (A Study of TRM and ATC Determination for Electricity Market Restructuring)

  • 이효상;최진규;신동준;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.