• Title/Summary/Keyword: Reactive Power Compensation

Search Result 297, Processing Time 0.025 seconds

The Anti-Islanding Method with Compensation of Load Reactive Power for Grid-connected Photovoltaic Generation System (계통 연계형 태양광 발전 시스템의 부하 무효전력 보상이 적용된 단독운전 인지법)

  • Jeong, Jin-Beom;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.58-64
    • /
    • 2008
  • In this paper, we present an active anti-islanding method with a load monitoring system using reactive power control. The proposed method, which is based on reactive power control, has fewer harmonics components than those in conventional methods, and it can minimize the reactive power component of the grid because it compensates the reactive power component with the load monitoring. The proposed quick islanding detection method was confirmed from the experimental results with an inverter for a 3kW photovoltaic system.

Practical Applications of Reactive Power and Voltage Planning In Korea Power System (우리나라 계통에서의 무효전력 수급현황 및 전압특성 분석)

  • Lee, Joo-Ho;Jung, Eung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.158-161
    • /
    • 2004
  • This paper presents practical applications of reactive power and voltage planning to obtain voltage stability and operational voltage level for 2005 year summer peak Korea power system. It also describes the new electric facilities, operation criteria, voltage levels, MVAr flows, reactive power reserves in each control area. And reactive compensation devices are installed to maintain established voltage levels and stability margins. This simulation results show the improvement of voltage levels and the increase of reactive margins & interface flow margins. Finally, the paper reports the necessity of dynamic reactive reserves. It can be applied to analysis reactive compensation requirements and P-V & V-Q curves by PSS/E & VSAT.

  • PDF

Coordinated Control Strategies with and without Circulating Current in Unified Power Quality

  • Feng, Xing-tian;Zhang, Zhi-hua
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1348-1357
    • /
    • 2015
  • Under traditional unified power quality conditioner (UPQC) control, a UPQC series converter (SC) is mainly used to handle grid-side power quality problems while its parallel converter (PC) is mainly used to handle load-side power quality problems. The SC and PC are relatively independent. The SC is usually in standby mode and it only runs when the grid voltage abruptly changes. In this paper, novel UPQC coordinated control strategies are proposed which use the SC to share the reactive power compensation function of the PC especially without grid-side power quality problems. However, in some cases, there will be a circulating current between the SC and the PC, which will probably influence the compensation fashion, the compensation capacity, or the normal work of the UPQC. Through an active power circulation analysis, strategies with and without a circulating current are presented which fuses the reactive power allocation strategy of the SC and the PC, the composite control strategy of the SC and the compensation strategy of the DC storage unit. Both of the strategies effectively solve the SC long term idle problem, limit the influence of the circulating current, optimize all of the UPQC units and reduce the production cost. An analysis, along with simulation andexperimental results, is presented to verify the feasibility and effectiveness of the proposed control strategies.

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

A Study on the Optimal Reactive Power Calculation Method of Induction Generator for Marine Small Hydraulic Power (해양 소수력발전용 유도발전기의 최적 무효전력 산정방식에 관한 연구)

  • Lee, Won-Jae;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.100-107
    • /
    • 2013
  • Since the West Sea experiences a big difference in tides, the output power of the small marine hydroelectric power plant varies with the tide. When an induction generator is used here for small hydroelectric power, the reactive power capacitor should be installed at the generator main bus to compensate for the changes in power. As such, the sizing method for the power compensation of the induction generator is reviewed and an optimal method for compensation is suggested. The self-excitation minimum capacitor capacity method, which prevents high voltages, and the power factor automatic control method, which retains a power factor of greater than 90% are reviewed. The compensation effect of reactive power is confirmed through a case study.

A Study on Reactive Power Compensation against Voltage Collapse Considering Load Model (부하 모델을 고려한 전압 안정도 측면에서의 무효전력 보상량 결정에 관한 연구)

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.168-170
    • /
    • 2001
  • This paper presents the strategy of reactive power compensation which directly improves voltage stability. Voltage stability index that serves as an indirect assessment of voltage stability margin is derived from M.G.C.F. (Modified Generalized Curve Fit) algorithm incorporating load model. Weak buses are ranked by this stability index, and amounts of reactive power compensation are determined by function of reactive power and stability index. Using the proposed strategy, all load buses can be prevented from voltage collapse gradually. A simple illustrative example is given as well as simulation results obtained on 5 bus test system and 19 bus real power system.

  • PDF

Building Energy Management System with Next Day Demand Forecasting of Building Load (익일 빌딩 부하 예측 기능을 갖는 빌딩에너지관리시스템)

  • Choi, Sang-Yule
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.119-123
    • /
    • 2014
  • The main purpose of reactive power compensation monitoring system is to manage factory electrical installation efficiently by On-Off switching reactive power compensation equipment. The existing reactive power compensation monitoring system is only able to be managed by operator whenever electrical installation needed reactive power. Therefore, it may be possible for propagating the installation's faults when operator make the unexpected mistakes. To overcome the unexpected mistakes, in this paper, the author presents a reactive power compensation monitoring system for factory electrical installation using active database. by using active database production rule, stated system can minimize unexpected mistake and can operate centralized monitoring system efficiently. Test results on the five factory electrical installations show that performance is efficient and robust.

A Cascaded D-STATCOM Integrated with a Distribution Transformer for Medium-voltage Reactive Power Compensation

  • Lei, Ertao;Yin, Xianggen;Chen, Yu;Lai, Jinmu
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.522-532
    • /
    • 2017
  • This paper presents a novel integrated structure for a cascaded distribution static compensator (D-STATCOM) and distribution transformer for medium-voltage reactive power compensation. The cascaded multilevel converter is connected to a system via a group of special designed taps on the primary windings of the Dyn11 connection distribution transformer. The three-phase winding taps are symmetrically arranged and the connection point voltage can be decreased to half of the line-to-line voltage at most. Thus, the voltage stress for the D-STATCOM is reduced and a compromise between the voltage rating and the current rating can be achieved. The spare capacity of the distribution transformer can also be fully used. The working mechanism is explained in detail and a modified control strategy is proposed for reactive power compensation. Finally, both simulation and scaled-down prototype experimental results are provided to verify the feasibility and effectiveness of the proposed connection structure and control strategy.

Determination of Reactive Power Compensation Considering Large Disturbances for Power Flow Solvability in the Korean Power System

  • Seo, Sang-Soo;Kang, Sang-Gyun;Lee, Byong-Jun;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • This paper proposes a methodology using a tool based on the branch-parameter continuation power flow (BCPF) in order to restore the power flow solvability in unsolvable contingencies. A specified contingency from a set of transmission line contingencies is modeled, considering the transient analysis and practice in the Korean power system. This tool traces a solution path that satisfies the power flow equations with respect to the variation of the branch parameter. At a critical point, in which the branch parameter can move on to a maximum value, a sensitivity analysis with a normal vector is performed to identify the most effective compensation. With the sensitivity information, the location of the reactive power compensation is determined and the effectiveness of the sensitivity information is verified to restore the solvability. In the simulation, the proposed framework is then applied to the Korean power system.

Capacity Requirement Estimation of Shunt Active Power Filter for Thyristor Converter Load (싸이리스터 컨버터부하에 적용되는 병렬형 능동필터의 적정용량산정)

  • Park, No-Jung;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.715-726
    • /
    • 1999
  • This paper estimates the capacity of shunt type active power filters(APF) for harmonic/reactive power compensation with a thyristor converter load. The base capacity requirement of APF is defined for idealized converter load current waveform and the effect of commutation overlap on the APF capacity is examined. The APF capacity required for reactive power compensation in addition to the harmonic elimination is estimated to give maximum achievable power factor for various operating condition of the partially-loaded thyristor converter. The method of current limit of APF is introduced, and it is shown that the APF capacity can be considerably reduced by deliberately limiting the peak current while maintaining the filtering performance to meet the level std 519 regulation.

  • PDF