• Title/Summary/Keyword: Reactions to Noise

Search Result 35, Processing Time 0.023 seconds

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

Nanotechnology in Biodevices

  • Choi, Jeong-Woo;Oh, Byung-Keun;Kim, Young-Kee;Min, Jun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.5-14
    • /
    • 2007
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

Analysis of Livestock Vocal Data using Lightweight MobileNet (경량화 MobileNet을 활용한 축산 데이터 음성 분석)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.16-23
    • /
    • 2024
  • Pigs express their reactions to their environment and health status through a variety of sounds, such as grunting, coughing, and screaming. Given the significance of pig vocalizations, their study has recently become a vital source of data for livestock industry workers. To facilitate this, we propose a lightweight deep learning model based on MobileNet that analyzes pig vocal patterns to distinguish pig voices from farm noise and differentiate between vocal sounds and coughing. This model was able to accurately identify pig vocalizations amidst a variety of background noises and cough sounds within the pigsty. Test results demonstrated that this model achieved a high accuracy of 98.2%. Based on these results, future research is expected to address issues such as analyzing pig emotions and identifying stress levels.

Preliminary Study on the Effects of Monaural Beating Sound of Tires to Human Body (타이어의 모노럴 비팅음이 인체에 유발하는 영향에 관한 기초 연구)

  • Baek, Kwang-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The effects of monaural beating sound generated according to the number of tire pitch blocks to human body are measured from experiments, and the possibilities of similar positive effects of enhancing alpha waves in human brain are investigated. Due to the requirement of repeatability and measurement conditions, recorded sounds of the tire noise are used for the experiment in a quiet room and human responses are measured using HRV. Although the number of statistically meaningful results was small, it showed that positive human reactions are probably possible.

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Mitochondrial DNA Mutation (3243A→G,1555A→4G,7445A→G) in Noise-Induced (소음성 난청에서의 Mitochondrial DNA A3243G, A1555G, A7445G 돌연변이)

  • Hong Young-Seoub;Nishio Hisahide;Lee Myeong-Jin;Kwak Ki-Young;Hwang Chan-Ho;Shin Dong-Hoon;Kwak Jong-Young;Lee Yong-Hwan;Kim Jong-Min;Kim Joon-Youn
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.913-919
    • /
    • 2004
  • Mitochondrial DNA mutations have been reported in recent years in association with sensorineural hering loss. The purpose of this study is to identify the association between the noise-induced sensorineural hearing loss and the A to G mutation at nucleotide 3243, 1555, 7445 of mitochondrial DNA. Study subjects were established by history and chart review, and audiological and clinical data were obtained. Blood was sampled from 214 normal controls, 102 noise-induced hearing loss, and 28 sensorineural hearing loss. The DNA of these individuals were extracted, and mitochondrial DNA fragments were analyzed by polymerase chain reaction. Subsequently, the coding sequence of mitochondrial DNA 3243, 1555, 7445 were sequenced, and compared to the normal sequence, and all sequence variations were analyzed by restriction enzymes. Mitochondrial DNA mutations $(3243A{\rightarrow}G,\;1555A{\rightarrow}4G,\;7445A{\rightarrow}G)$ were not detected by polymerase chain reactions in any patients with noise-induced hearing loss, sensorineural hearing loss, and normal controls. The DNA sequencing of PCR products did not revealed an A to G substitution at nucleotide 3243, 1555, 7445 of mitochondrial DNA. The noise-induced sensorineural hearing loss was not associated with mitochondrial DNA mutation $(3243A{\rightarrow}G,\;1555A{\rightarrow}4G,\;7445A{\rightarrow}G)$.

Study on Background Music of Distributors (유통점의 배경음악에 관한 연구)

  • LEE, Joon-Pyo;HWANG, Hee-Joong
    • Journal of Distribution Science
    • /
    • v.17 no.9
    • /
    • pp.127-131
    • /
    • 2019
  • Purpose - This study focuses on clues that can clearly amplify the effects of background music. Review which store environments have a direct and positive impact on consumer responses, such as purchases. Research design, data, and methodology - This study focuses on clues that can clearly amplify the effects of background music. The purpose of this study is to examine what kind of store environment, combined with background music, has a direct and positive effect on consumer reactions such as purchase, and suggest future research directions. Results - The manager decides to use background music in the store because it is relatively inexpensive and easy to identify the emotional response of the consumer. In addition, appropriate background music lowers the psychological purchasing barriers of consumers. Previous studies have often not conducted a basic review of whether consumers perceive background music when it is used in retail stores. For example, it is necessary to make sure that the volume of the background music is loud enough and that the noise is properly excluded despite the congestion of the store so that the pure influence of the background music on the consumer can be measured. A way for store managers to clarify and differentiate their identity is to create a unique and satisfying store atmosphere for their customers. In order to help customers focus on their purchases, store managers must use marketing elements to integrate the five senses. And they should plan background music aiming at synergy effect of these five senses. In other words, in order to make the store atmosphere positive, it is not enough to have a suitable visual design interior or background music in the store, and consumers should have the opportunity to smell, taste and touch it directly. Conclusions - In conclusion, we hope that the following issues will be studied by several scholars in the future. It should be clarified that the impact of background music on customers varies depending on the customer's movement in the store, the selection of the background music genre order, and the timing (interval) of background music exposure to the customer.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Powder Metallurgy for Light Weight and Ultra-Light Weight Materials

  • Kieback, B.;Stephani, G.;Weiβgarber, T.;Schubert, T.;Waag, U.;Bohm, A.;Anderson, O.;Gohler, H.;Reinfried, M.
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.383-389
    • /
    • 2003
  • As in other areas of materials technology, the tendency towards light weight constructions becomes more and more important also for powder metallurgy. The development is mainly driven by the automotive industry looking for mass reduction of vehicles as a major factor for fuel economy. Powder metallurgy has to offer a number of interesting areas including the development of sintered materials of light metals. PM aluminium alloys with improved properties are on the way to replace ferrous pars. For high temperature applications in the engine, titanium aluminide based materials offer a great potential, e.g. for exhaust valves. The PM route using elemental powders and reactions sintering is considered to be a cost effective way for net shape parts production. Furthermore it is expected that lower costs for titanium raw materials coming from metallurgical activities will offer new chances for sintered parts with titanium alloys. The field of cellular metals expands with the hollow sphere technique, that can provide materials of many metals and alloys with a great flexibility in structure modifications. These structures are expected to be used in improving the safety (crash absoption) and noise reduction in cars in the near future and offer great potential for many other applications.