• Title/Summary/Keyword: Reaction-torque

Search Result 169, Processing Time 0.024 seconds

Amino Silane, Vinyl Silane, TESPD, ZS (TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber (CIIR) Compounds Part III: Comparative Studies on Hard Clay and Soft Clay Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.190-197
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, sulfur silane (TESPD), and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB) and CIIR/hard clay/CB compounds and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. Comparing hard clay and soft clay filled compounds, hard clay (Suprex) filled system shows a higher die C tear than the soft clay (GK) filled one. The other properties (Mooney, extrusion torque/pressure, torque rise ($M_H-M_L$), modulus at 300%) are close to each other. Among various silanes, the ZS treated hard clay (Suprex) compound shows the highest mechanical property following hard clay(S)/vinyl silane(V) and soft clay(GK)/vinyl silane(V) compounds. The TESPD and the ZS effectively helps a formation of a strong 3-dimensional network structure between silica and CIIR via coupling reaction due to bifunctional nature of TESPD. In addition to that, the ZS added compounds show both a better processability and mechanical properties compared to the S2 ones at low concentration due to improved compatibility between zinc soap and CIIR matrix. Only the ZS added compound shows both improved processabilities (Mooney, Extrusion torque-& pressure) and improved mechanical properties (degree of crosslinking, elongation modulus, tear, and fatigue to failure counts) on both CIIR/hard clay/CB and CIIR/soft clay/CB compounds.

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

A Study on the Viscosity Characteristics of Dewatered Sewage Sludge according to Thermal Hydrolysis Reaction (열가용화 반응에 의하여 탈수된 하수슬러지의 점도 특성에 관한 연구)

  • Song, Hyoung Woon;Han, Seong Kuk;Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • demand for a low-cost treatment technology is high because the sewage sludge has an 80% or higher water content and a high energy consumption cost. This study apply the thermal hydrolysis reaction that consumes a small amount of energy for sludge treatment. The purpose of this study is to quantify the viscosity of sewage sludge according to reaction temperature. we measured continuously the torque of dewatered sludge by the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermal hydrolysis under a high temperature and pressure. Therefore, the bond water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry of a liquid phase. The results of the viscosity measurements according to the reaction temperature showed that the viscosity was very high at $270,180kg/m{\cdot}sec$ at a temperature of 293K, but rapidly decreased with increases in the reaction temperature to $12kg/m{\cdot}sec$ at a temperature of 400K and to $4kg/m{\cdot}sec$ at a temperature of 460K or higher, similar to the changes in the viscosity of water. And we was obtained the viscosity function of boundary condition for the optimal design of thermal hydrolysis reactor by numerical modeling based on the this results.

Development and Performance Test of a Spherical Reaction Wheel Actuator with Magnetic Levitation (자기부상을 적용한 구체 반작용휠 구동기 개발 및 성능 시험)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.731-737
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using a velocity-voltage characteristic curve of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

Attitude Control for Agile Spacecraft Installed with Reaction Wheels (리액션휠 기반 고기동 위성 자세제어 기법 연구)

  • Kim, Taeho;Mok, Sung-Hoon;Bang, Hyochoong;Song, Taeseong;Lee, Jongkuck;Song, Deokki;Seo, Joongbo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.934-943
    • /
    • 2018
  • In these days, demand for agile spacecraft is gradually increasing, due to the fact that agile spacecraft can improve mission capability. In this paper, an attitude control logic based on reaction wheels that can enhance agility of spacecraft is proposed. Three methods are suggested, and all three or part of them can be integrated to the existing attitude control system. First, a feedforward/feedback controller is introduced, and its pros and cons are provided, compared to the conventional feedback controller. Second, an attitude command generation method that fully utilizes torque/momentum capacities of reaction wheels is proposed. Third, a torque (current) control mode for internal wheel control is introduced. Numerical results verify that the settling time can be significantly reduced by employing the feedforward/feedback control method, especially for large angle maneuver.

Spacecraft Attitude Control with a Two-axis Variable Speed Control Momentum Gyro

  • Bang, Hyo-Choong;Park, Young-Woong;Lee, Jung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1747-1753
    • /
    • 2004
  • CMG(Control Momentum Gyro) is a control device being used for spacecraft attitude control constructing relatively large amount of torque compared to conventional body-fixed reaction wheels. The CMG produces gyroscopic control torque by continuously varying the angular momentum vector direction with respect to the spacecraft body. The VSCMG(Variable Speed Control Momentum Gyro) has favorable advantages with variable speed to lead to better control authority as well as singularity avoidance capability. Attitude dynamics with a VSCMG mounted on a two-axis gimbal system are derived in this study. The dynamic equation may be considered as an extension of the single-axis counterpart. Also, a feedback control law design is addressed in conjunction with the dynamic equations of motion.

  • PDF

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF

Development Status of 3MW Class Offshore Wind Turbine (3MW급 해상 풍력발전시스템 개발현황)

  • Joo, Wan-Don;Park, Jeung-Hun;Choi, June-Hyug;Lim, Chae-Wook;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.366-369
    • /
    • 2007
  • This paper presents the general results of the conceptual design of a 3MW class offshore wind turbine named WinDS 3000 under development. In WinDS 3000, an integrated drive train design, three stage gearbox and permanent magnet generator (PMG) with fully rated converters have been introduced. A pitch regulated variable speed power control with individual pitch control has been adopted to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. Through the introduction of WinDS 3000, it is expected that helpful to understanding of the development status of 3MW offshore wind turbine.

  • PDF

Spacecraft attitude control using quanternion parameters

  • Yoon, Hyungjoo;Tahk, Minjea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.115-118
    • /
    • 1995
  • This paper present an attitude control using quaternions as feedback attitude errors. The Euler's eigenaxis rotation provides the shortest angular path between two attitudes. This eigenaxis rotation can be achieved by using quaternions since quaternions are related with the eigenaxis. The suggested controller uses error quaternions and body angular rates and generates a decoupling control torque that counteracts the natural gyroscopic coupling torque. The momentum dumping strategy using the earth magnetic field is also applied in this paper to unload the angular momentum of the reaction wheels used in the attitude control.

  • PDF

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • 윤진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.906-910
    • /
    • 2003
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearings considering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

  • PDF