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1. INTRODUCTION 

A device generating torque command continuously is needed 

to control spacecraft attitude precisely. Reaction wheels(RW) 

are continuous torque generators onboard most spacecraft 

lately.[1] RW make the best use of reaction torque provided 

by the wheel speed control using servo motors. A reaction 

wheel consists of a spinning rotor whose spin axis is fixed to 

the spacecraft and its speed is increased or decreased to 

generate reaction torque about the spin axis.  

The main drawback of a reaction wheel is that there is no 

torque amplification effect that causes more energy 

consumption than CMG for a given rotation. Also, as the 

direction of their angular momentum is fixed, control 

command is restricted. Particularly, if a large torque command 

is demanded on, it leads to a RW saturation problem. As the 

moment of inertia can not be desired in most RW arbitrarily, 

wheel saturation is an important issue for the efficiency of 

spacecraft attitude control.  

For those reasons, CMG(Control Momentum Gyro) is widely 

studied lately.[2-5] Unlike RW, A CMG contains a spinning 

rotor with large, constant angular momentum, whose angular 

momentum vector can be changed with respect to the 

spacecraft. That is, angular momentum vector of CMG wheel 

has an angular velocity component generating gyroscopic 

torque with respect to the body axis. Even for a small wheel 

angular momentum, a large control torque can be produced by 

enlarging the magnitude of angular velocity relatively. Such a 

CMG has been used in many military satellites requiring rapid 

attitude maneuver traditionally but is being loaded on the LEO 

earth observation satellites at large recently. That is, CMGs 

are indispensable equipments to make the body-axis aligned 

with a stereo camera pointing to the earth quickly and 

precisely. As the earth observation satellites are minimized 

and required precious attitude control, CMGs are becoming 

smaller and general gradually.  

In CMGs, there are two methods to generate control torque. 

At first, making the angular momentum fixed and angular 

momentum vector variable, only momentum vector is used to 

generate control torque. In the second, making not only 

momentum vector but also angular momentum changeable, we 

use the VSCMG(Variable Speed Control Momentum Gyro) to 

produce control torque. On the other hand, there are one-axis 

and two-axis gimbal systems according to the method of 

wheel alignment. One-axis gimbal CMGs require a minimum 

of four units in pyramid configuration for full 3-axis attitude 

control even when one of those CMGs is out of order[5]. The 

most significant drawback with SGCMGs is the problem of 

singularities. This is the condition for which no torque can be 

produced for a certain set of gimbal angles as representing the 

control torque in three body axis using 4 wheels[6-7] .  

Generally, VSCMGs or the CMG in two-axis gimbal system 

is robust about the problem of singularities. The technique to 

solve singularity problem form is a very important factor in 

operating the CMGs system. Various control laws have been 

presented using CMGs. CMGs system are mainly used for the 

large angle attitude maneuver laws according to the original 

characteristics.[4-7] In case of external disturbances, control 

laws using CMGs is considered.[13] Also, control laws with 

CMGs have been investigated in mode of storing 

energy.[14,15] Mostly CMGs model in which angular 

momentum is fixed in one-axis gimbal is chosen. Control laws 

are expressed on the quaternion parameters. But recently, 

Attitude control laws using the MRP(Modified Rodrigues 

Parameters) are studied.  

Attitude dynamics with a VSCMG mounted on a two-axis 

gimbal system are derived in this study. The dynamic 

equations may be considered as an extension of the single-axis 

counterpart. Also, a feedback control law design is addressed 

in conjunction with the dynamic equations of motion.[16] As 

the degree of freedom is increased at the two-axis gimbal 

system in comparison with the single-axis gimbal system, 

there is a difference in the attitude dynamic equation. As a 

result, a different control law is derived. This study is based on 

the reference [16] and presents the generalized dynamic 

equation and gimbal steering laws.  
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2.1 Two-axis Gimbal CMG System  

Before deriving equations of motion, let us consider the 

principal of two-axis gimbal system briefly. It is represented 

as the configuration of a CMG attached to a two-axis gimbal 

fixed in the body-axis of satellite as Fig. 1. It is assumed that 

the gimbal has a constant moment of inertia. 

te
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Fig. 1 A CMG attached to a two-axis gimbal 

The wheel angular momentum(
WH ) can be changed by 

adjusting the wheel speed. Also, gyroscopic torque can be 

generated by using gimbal rate( , ). Actually, gyroscopic 

torque is generated from the angular velocity motion( , )

about the gimbal-axis with respect to body-axis. { ,t ne e } is the 

unit vectors attached to gimbal frames and se  is the unit 

vector according with wheel spin-axis. In this way, equations 

of motion are represented with the unit vector attached to 

gimbal axis and wheel-axis in which torque is given by the 
motion of wheel or gimbal. For reference, only -axis 

rotation may be generated for the case of the one-axis gimbal.  

2.2 Equations of Motion 

To derive equations of motion, the whole system is divided 

into satellite body, gimbal and wheel. The total angular 

momentum of a satellite with a CMG cluster can be expressed 

in the satellite body frame as[16-18] 

B W GH H H H                          (1)

where BH  is the angular momentum vector of a satellite, 

GH  is the angular momentum vector of the gimbal, and WH

denotes the angular momentum vector of the wheel.  

First, the angular momentum vector of the gimbal is[16] 

/G G G NIH                              (2)

where /G N  represents the angular velocity vector of the 

gimbal with respect to the inertia frame and can be expressed 

as 

/ / /G N G B B N                           (3)

 Therefore, GH  is 

/ /

B B

G G G B G B NI IH                      (4)

where B

GI  is the moment of inertia of the gimbal with 

respect to the inertia frame and the time-variant function with 

respect to the body frame. If , ,Gs Gt GnI I I  is written as the 

principal inertia about the gimbal-axis, then 
B

GI  can be 

defined as. 

B T

G G

T T T

Gs s s Gt t t Gn n n

I BG I BG

I I Ie e e e e e

                   (5)

where the matrix BG  represents the direction cosine 

matrix between gimbal-axis and body-axis. As a result, the 

angular momentum vector of the gimbal is  

/ /( )T T T

G Gs s s Gt t t Gn n n B N G G BI I I IH e e e e e e         (6)

The components of projected angular velocity vector about the 

body-axis into the gimbal-axis is defined as 

/

/

/

T

s s B N

T

t t B N

T

n n B N

e

e

e

                                (7)

 And, if the angular motions( , ) of the gimbal with respect 

to the body frame is considered, then Eq. (6) implies 

G Gs s s Gt t t Gn n nI I IH e e e            (8)

Meanwhile, the angular momentum vector of the reaction 

wheel is 

/W W W NIH                              (9)

 By applying the similar method of the equation of gimbal 

motion to Eq. (9), we can derive the following: 

W Ws s s Wt t t Wt n nI I IH e e e      (10)

 In case of the reaction wheel, assume that the components 

of the inertia perpendicular to the wheel spin axis are the same 

because of the symmetrical structure geometrically. 

 From now on, let the body angular velocity vector with 

respect to the inertia frame, /B N  as  for the sake of 

convenience. By the way, the angular momentum vector of a 

satellite body is 

/B B B N BI IH                        (11)

where BI  is the moment of inertia matrix of a satellite 
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itself except for the gimbal and the wheel. 

Using the angular momentum vectors derived up to now, the 

total equation of rotational motion by Euler’s formula is 

H L                                   (12)

where L  is an external torque.[17] To take the time 

derivative of the total angular momentum of the system, the 

time derivative of the unit vector with respect to the gimbal 

axis has to be derived. Because the angular momentum vector 

is defined about the gimbal axis and gimbal axis rotates about 

the body axis continually. They are then calculated as 

s t n n t

t n s s n

n n s s t

e e e

e e e

e e e

                    (13)

Also, the time derivative of the gimbal axis components of 

the angular velocity about the body axis can be derived as 

T T

s s s

T

t n s

T T T

t t t s t

T T T

n n n s n

e e

e

e e e

e e e

                    (14)

Using the relation equation derived till now, the angular 

momentum vector of the wheel can be shown to be 

[

2 ]

[ 2

]

T

W Ws s t n s

Ws s n Ws Wt s n

T

Wt s Wt t t

T

Wt n Wt s Ws s

Wt Ws t s Ws t n

I

I I I

I I

I I I

I I I

H e e

e e

e

e

         (15)

To operate the wheel, a torque input should be provided. 

Because the wheel spin axis is the same with the axis se ,

torque input is imposed into this direction by using a servo 

motor. As a result, the variance of the angular momentum in 

the same axis comes into existence. Therefore, using the 

components of the axis se  in Eq. (15), a torque equilibrium 

equation can be expressed as 

T

s Ws s t nu I e                     (16)

where su is the torque input into the wheel spin axis. To 

acquire the time derivative of the angular momentum in a 

gimbal system, the angular momentum vector defined in Eq. 

(8) must be used. In consequence of that, one obtains 

G Gs s s Gt t t Gn n n

Gs s s Gt t t Gn n n

I I I

I I I

H e e e

e e e
           (17) 

 If the time derivative of the gimbal axis unit vector and of 
body angular velocity components with respect to the gimbal 
axis are handled like the case of the wheel, the time derivative 
of the angular momentum vector in a gimbal system becomes 

[

]

[

]

[

]

G Gs Gt Gn t Gn Gt t n

T

Gn Gt n Gs n Gs s s

T

Gs Gt Gn s Gt t

Gs Gn n s Gt t

T

Gn s n

Gt Gs s t Gt Gs s n

I I I I I

I I I I

I I I I

I I I

I

I I I I

H

e e

e

e

e

e

         (18)

The governing equations for the gimbal system and wheel 

angular momentum vector have been derived by this time. In 

the one-axis gimbal system of reference [16], the equation is 
defined in term of . But in the two-axis gimbal system, the 

gimbal motion variable,  is added to the equation. To 

simplify the equation, the sum of the moment of inertia about 

the wheel and that about the gimbal is defined as 

0 0

0 0

0 0

G W

s

t

n

I I I

J

J

J

                          (19)

In the two-axis gimbal system, the variance of the angular 

momentum about the wheel and the gimbal arises from the 

torque produced. That is, a gimbal torque maintains  

equilibrium with the variance of the angular momentum in a 

wheel and gimbal system. This equation takes the form 

G W GH H L                              (20)

where GL  represents the torque applied to the gimbal. An 

gimbal torque is given to the axis ,t ne e . Therefore, using the 

time derivative of the angular momentum vector induced from 

Eqs. (15) and (16), the torque equilibrium equations can be 

rewritten 

t T

g t t s n s n

s t n s Ws n

u J J J

J J J I

e
             (21)

n T

g n n t s s t

n t s s Ws t Wt s

u J J J

J J J I I

e
        (22)

where ,t n

g gu u  are the torque inputs into the gimbal axis, 

,t ne e , respectively. 

From the time derivative of the angular momentum vectors 

derived from Eqs. (11), (15), and (17) and the Euler equation 

derived from Eq. (12), the total equation of the rotational 

motion is expressed in a compact form as 
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[

]

[ ]

s s t Ws n t g t

Gn Gt Gs n Gn Gt

t s s Ws n t n s t

n n Ws t s s t n s

I I

J I J J

I I I I I

J I J J J

J I J J J

e

e

e L

       (23)

A new parameter,
BI I J  is the inertia matrix of 

the total system containing the satellite body, gimbal, and 

wheel. Meanwhile, the inertia of the wheel and gimbal J  is 

changed with respect to the body frame continuatively. 

Therefore, using Eq. (5), we can rewrite such that[16] 

B

T T T

B s s s t t t n n n

I I J

I J J Je e e e e e
                (24)

As shown in Eq. (23), the three-axis’s attitude maneuver is 

possible by varying the two-axis motion of the gimbal( , )

and the angular momentum change of the wheel( WsI ). In the 

case of an one-axis gimbal system studied conventionally, the 

degree of freedom of the gimbal is restricted within the term, 
. So, Eq. (23) can be expressed as 

( )

s s t Ws t g t

t s s Ws t n s Ws n

n n Ws t

I I

J I J J

J I J J I

J I

e

e

e L

        (25)

This equation is equal to the equation of the reference [16] 

completely. Therefore, one can say that the equation about a 

two-axis gimbal system derived in this study is the general 

equation. Also, if we consider that the wheel angular velocity 

is invariant in Eq. (23), torques are generated about two-axis 

by the motion of the gimbal.  

3. ATTITUDE CONTROL LAW 

In this section, we perform the design of a controller using 

the equations of motion derived in the previous section. In the 

design of the control law about the satellite attitude, there are 

two methods in general- linear and non-linear. In this study a 

non-linear control law is used like it is. To design a control 

law, we describe the attitude dynamics shown for the 

momentum equilibrium during the attitude maneuver, as well 

as the attitude kinematics. First, as the variable to describe the 

attitude kinematics, we use the so-called MRPs(Modified 

Rodrigues Parameter) which has been used in the study of 
satellite attitude control recently. MRPs' vectors, are 

defined as 

0

1,2,3
1

i
i i                          (26)

where i  are the Euler parameters. Also, the MRPs are 

defined in terms of the Euler principal unit vector l  and 

angle  by 

tan
4

l                                 (27)

 And MRPs and the angular velocity of a satellite body satisfy 
the differential equation given by 

1

2

3

1

4
                            (28)

where matrix  is

2 2

1 1 2 3 1 3 2

2 2

2 1 3 2 2 3 1

2 2

3 1 2 3 2 1 3

1 2 2 2

2 1 2 2

2 2 1 2

Eq. (27) can be transformed in type of vector to 

2

3 3

1
1 2 2

4

1

4

TI
              (29)

Matrix  satisfies the relation equation as 

1

2
2

1

1

T                          (30)

Therefore, let inverse transform Eq. (28) into 

2
2

4

1

T                           (31)

 So far, attitude dynamics and kinematics have been derived 
in terms of MRPs. Next, error parameters about the body 
angular velocity vector are introduced to design a 
controller[15,16]. 

r
                               (32)

where r  is the body angular velocity with respect to the 

reference frame. Then, the attitude variables  imply the 

attitude errors between the body frame and the reference frame 
and satisfy the relation equation of the kinematics as 

1

4
                            (33)

 Then, note that the attitude error variables  are defined as 

the attitude angle between the body frame and the reference 
frame. That is,  are not related with the inertia frame. To 

design a controller, Lyapunov stability theory is derived. To 
do this, candidate Lyapunov function are introduced as 

1
2 log 1

2

T TU I K                 (34) 

where 0K . This function is positive definite and radially 
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unbounded in terms of the attitude errors  and . The 

time derivative of U  is 

1 1
4

2 1

T T

T

d IdU
I K

dt dt
      (35)

 As the inertia matrix( I ) is the time variant function like Eq. 

(24), the time derivative of the inertia caused by the gimbal 
axis’s spin with respect the body frame is calculated as 

T T T T

s t s t t s n s s n n s

d I
J J J J

dt
e e e e e e e e     (36)

 Meanwhile, let the governing equation of the angular 

velocity error  and the kinematics of Eq. (29) put into Eq. 

(35). Then, we can rewrite as 

1

2

T

r

d IdU
I K

dt dt
           (37)

 To stabilize the system, the preceding equation suggests that, 
for Lyapunov stability theorem, the relation equation about 
control input 

2
r

d I
I K D

dt
               (38)

where D  is the payoff matrix of positive definition. And if 
the time derivative of Lyapunov function satisfies the 
condition as 

0TdU
D

dt
                          (39)

 Then, the system is stabilized. Using the equation of motion 
in Eq. (23), the control law given by Eq. (38) can be rewritten 
as

[

]

1

2

s s t Ws n t g t

Gn Gt Gs n Gn Gt

t Ws s Ws n t n s t

n n Ws t t n Ws s

r

J I J J

I I I I I

J I J J J

d I
J I J J J

dt

I I K D

e

e

e

     (40)

 Meanwhile, if an inertial torque is generated in the wheel and 

gimbal system to control an extraneous torque( L ), Eq. (40) 
can be expressed as 

0

rF G L                         (41)

 If matrix F  is stated as 

11 12 13

21 22 23

31 32 33

f f f

F f f f

f f f

                         (42)

Then, the components of this matrix is defined as 

11 21 23 31 32

12

13

22

33

, 0, 0, 0, 0

1 1

2 2

1

2

1

2

Ws

s t n s s t t n t n

Gn Gt Gs n

Ws t n s Ws s t s

t n s s n t s

f I f f f f

f J J J J J J J

f I I I

f I J J I J J

f J J J J J

 Also, matrix G  is 

0 0 0

0 0

0 0

n

t

G J

J

                         (43)

 To attain the goal of control, the desired torque input rL  is 

given by 

1

2
r r r

Ws n t Ws t n

d I
I I

dt

I I K D

L

e e

             (44)

 Conventionally, CMG doesn’t have depended on the gimbal 

acceleration( , ) command but has generated the gyroscopic 

torque by the gimbal angular velocity( , ). Or, VSCMG can 

generate the torque about three axis by varying the wheel’s 

spin angular velocity( ). Therefore, by eliminating the 
gimbal acceleration input in Eq. (41) and arranging, we can 
express as 

1

rF L                              (45)

 From the previous equation, we can calculate the wheel 

acceleration( ) input and gimbal axis angular velocity 

( , ) command to organize the torque input rL  required 

for the attitude maneuver. But if the inverse of the matrix F

is out of existence, singular points happen. To come over the 

problem, various techniques have been studied by far. Because 

this is out of this study range, this will be not analyzed any 

longer. If singularity condition happens while applying the 

simulation in this study, the numerical method is substituted 

properly. That is, the inverse matrix is always existent. So, we 

can obtain the unique solution in Eq. (44). Therefore, using 

CMG in the two axis gimbal system contained the wheel with 

the variable angular velocity, we know that the attitude control 

is possible in three axis. Using the linear equation, the similar 

conclusion has been proved already in reference [18, 19]. Also, 

it is radically different from the CMG in one axis gimbal 

system having the pyramid configuration.  
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If the wheel angular velocity is constant in CMG system, 

then, 0  and Eq. (41) can be rewritten as 

1

22 23

32 33

r

f f

f f
L                          (46)

 Thus, we cannot obtain the unique ,  that satisfy Eq. 

(46) about the given rL . That is, the attitude control about the 

three axes is impossible in the two axes gimbal system using 

an invariant speed wheel of general. Therefore, to control 

about the three axes, we must consider the control function 

about terms of the wheel speed.  

4. NUMERICAL SIMULATION 

To prove the control law derived in this paper, we perform an 

simple simulation. At first, let me introduce the model data for 

the simulation. Assume that the inertia momentum of the 

satellite body is 286.2, 85.1,113. 6I diag kg m , the inertia 

momentum of the wheel is 2, 0.5, 0.2Ws WtI I kg m , and the 

inertia momentum of the gimbal is , , [0.6, 0.4, 0.4]Gs Gt GnI I I

2kg m . Also, the inertia condition of the attitude error is 

supposed 1 2 3, , 0.1, 0.2, 0.3  and the locus of 

reference angular velocity is given by 

0.03sin 0.2

( ) 0.05cos 0.2

0.02cos 0.2

r

t

t t

t

                    (47)

 Also, the feedback gain is 50, 50, 50K diag  and 

40, 40, 40D . First, by the result of the simulation, the 

response of angular velocity is shown in Fig 2. 

s

r

s

t

r

t

n

r

n

Fig. 2 Time responses of angular velocity 

All of the results are shown that the components of angular 

velocity follow up the locus of reference angular velocity 

expertly. That is, the Lyapunov controller gives satisfactory 

performance. After all, final angular velocity errors converge 

to zero.  

And attitude error response in MRP is shown in Fig. 3. We 

can confirm that final errors converge to zero to our 

expectations because of the stability of controller design 

condition.  

1

3

2

Fig. 3 Attitude error responses in MRP 

 Also, the response of required torque command( rL ) is given 

by Fig. 4. 

1L

2L

3L

Fig. 4 Required torque command trends 

 Required torque command is large relatively but can be 

reduced by regulating the control gain and many other 

conditions properly. Also, singularity problem happened for 

this simulation and was treated by numerical method. There 

are many studies about the singularity problem. In case of the 

two axis gimbal system, we can predict the result by taking 

advantage of the existing studies. Through preceding 

simulations, we can know that designed controller satisfy the 

desired tracking ability without difficulty.  

5. CONCLUSIONS 

Attitude dynamics with a VSCMG mounted on a two-axis 

gimbal system were derived in this study. Also, by using this, 

the design of a controller was introduced. The dynamic 
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equation was considered as an extension of the single-axis 

counterpart. We proved that a torque could be generated by 

the gimbal motion added through the equation obtained from 

the result. We showed the three-axis control was possible with 

a CMG. Also, the preceding feedback controller was 

introduced. Then, we suggested a CMG motion law to operate 

the control command. And the ability of the designed control 

law was proved through a simple simulation.  
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