• 제목/요약/키워드: Reaction-bonded $Si_3N_4$

검색결과 26건 처리시간 0.029초

Optimization of Binder Burnout for Reaction Bonded Si3N4 Substrate Fabrication by Tape Casting Method

  • Park, Ji Sook;Lee, Hwa Jun;Ryu, Sung Soo;Lee, Sung Min;Hwang, Hae Jin;Han, Yoon Soo
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.435-440
    • /
    • 2015
  • It is a challenge from an industrial point of view to fabricate silicon nitride substrates with high thermal conductivity and good mechanical properties for power devices from high-purity Si scrap powder by means of thick film processes such as tape casting. We characterize the residual carbon and oxygen content after the binder burnout followed by nitridation as a function of the temperature in the temperature range of $300^{\circ}C-700^{\circ}C$ and the atmosphere in a green tape sample which consists of high-purity Si powder and polymer binders such as polyvinyl butyral and dioctyl phthalate. The optimum condition of binder burnout is suggested in terms of the binder removal temperature and atmosphere. If considering nitridation, the burnout of the organic binder in air compared to that in a nitrogen atmosphere could offer an advantage when fabricating reaction-bonded $Si_3N_4$ substrates for power devices to enable low carbon and oxygen contents in green tape samples.

조대 Si입자분말을 사용한 질화반응 Si3N4의 치밀화 거동 (Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders)

  • 이주신;문지훈;한병동;박동수;김해두
    • 한국세라믹학회지
    • /
    • 제39권1호
    • /
    • pp.45-50
    • /
    • 2002
  • 평균입경 25$\mu m$의 Si조대분말에 소결조제의 조성과 양을 변화시켜 질화반응 질화규소 (RBSN)세라믹스를 제조할 때 나타나는 치밀화 거동, 미세구조의 발달 및 기계적 특성에 대하여 고찰하였다. 6wt% $Y_2O_3$ + 1wt% $Al_2O_3$(6YlA)의 소결조제를 첨가한 경우에는 치밀화를 이루지 못하였으나, 6wt% $Y_2O_3+3\;wt%\;Al_2O_3+2\;wt%\;SiO_2(6Y3A2S)$와 9wt% $Y_2O_3$+1.5wt% $A1_2O_3$+ 3w% $SiO_2$(9Yl.5A3S)의 소결조제를 첨가하여 이론밀도에 가까운 치밀화를 이루었다. $1900^{\circ}C$에서 소결한 6Y3A2S시편의 경우, 960MPa의 높은 파괴강도값과 $6.5MPa.m^{1/2}$의 파괴인성값을 얻었다.

카올린으로부터 Si-Al 탄화물의 합성 및 Si$_3$N$_4$ 결합 소결 특성 (Synthesis of Si-Al Carbonates from Kaolin and Sintering Characteristics by Reaction Bonding Si3N4)

  • 백용혁;김영구;한창;권양호
    • 한국세라믹학회지
    • /
    • 제28권9호
    • /
    • pp.667-674
    • /
    • 1991
  • In this study, Kaolin was carbonized at 1300~175$0^{\circ}C$ and its constituent mineral change was investigated. Carbonized kaolin at 1$650^{\circ}C$ was mixed with metallic silicon, formed and nitrified at 135$0^{\circ}C$ in N2-NH3 atmosphere. Properties of this product such as porosity, bulk density, MOR, nitrization rate and oxidation resistence were measured, and its mineralogical changes were investigated by XRD. The results were as follows; 1) $\beta$-SiC was initially synthesized at 150$0^{\circ}C$, and its amount was continuously increased with reaction temperature to 1$700^{\circ}C$. 2) At 1$600^{\circ}C$, mullite was rapidly decomposed and the amounts of $\beta$-SiC and $\alpha$-Al2O3 were increased simultaneously. 3) By adding alkali to kaolin, the decomposition temperature of mullite was dropped approximately 10$0^{\circ}C$, but the amount of $\alpha$-SiC was increased. 4) The highest values of their nitrization rate and MOR were obtained at the specimen of 35 wt% metallic silicon in nitrization reaction. 5) It seems that increment of $\alpha$-Si3N4 and $\alpha$-Al2O3 phase during nitrization was due to the decomposition of Al4SiC4 existed in carbonized kaolin. 6) Si3N4 bonded SiC-Al2O3 composite were fabricated from kaolin at relatively low temperature (135$0^{\circ}C$).

  • PDF

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

$Si_3 N_4$ 결합 SiC의 소결과 기계적 특성에 미치는 첨가제의 영향 (Effect of Additives of Sintering and Mechanical Properties of $Si_3 N_4$ Bonded SiC)

  • 백용혁;신종윤;정종인;한창
    • 한국세라믹학회지
    • /
    • 제29권7호
    • /
    • pp.511-516
    • /
    • 1992
  • In this study, SiC powder and Si powder were used as the raw materials. Mixture was prepared with addition of Al2O3 and Fe2O3 at 0.1~0.5wt% respectively. After this step, the mixture was pressed and nitrided for 30 hrs at 140$0^{\circ}C$ under NH3-N2 atmosphere. Mechanical properties of sintered specimens were investigated from measurement of porosity, bulk density and three point bending test. nitration reaction extent was observed at the change of mass before and after reaction, and the microstructure and the change of $\alpha$-Si3N4 and $\beta$-Si3N4 were observed by XRD and SEM. In the current work, the results are as follows 1. When Fe2O3 added, the nitridation increased with the content of Fe2O3, and the bending strength was increased from 0.1 wt% to 0.3 wt%, and decreased to 0.5 wt%. 2. When Al2O3 added, the nitridation and the bending strength increased little by little with the content of Al2O3 3. The bending strength of the specimen added with Fe2O3 were higher than that with Al2O3. Because the specimens contained Fe2O3 had much more the whisker type crystal of Si3N4 contributing to strength than contained Al2O3.

  • PDF

질화분위기에 따른 반응결합 질화규소의 미세구조변화 (The Microstructure of the Reaction -Bonded $Si_3N_4$ Formed in the Various Atmosphere)

  • 박지연;김종희
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.61-66
    • /
    • 1986
  • The gas mixtures ($H_2$/$N_2$, He/$N_2$) having a high thermal conductivity allow the heat generated by the nitriding exotherm to be dissipated from the compact in to the nitriding atmosphere permitting a more accurate control of temperature and produces a more uniform microstructure. In order to observe the effect of the mixed gas atmosphere on the microsturcture of RBSN. the specimen was nitrided in the mixed gas atmosphere which was containe up to 50vol% $H_2$ or He for 0-12 hrs at 135$0^{\circ}C$. The addition of hydrogen to nitrogen gas resulted in the growth of a-needle at the early stage of nitrding increase of the reaction rate and a finer and more uniform microstructure. in case of the addition of helium the behaviour of reaction was similar to the one with pure nitrogen. As the amount of helium was increased a coarse microstructure was formed.

  • PDF

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.

질화규소의 반응조건에 따른 미세구조 변화 (Microstructure Study on $Si_3N_4$ Formed by Various Nitridation Condition)

  • 전계남;김종희
    • 한국세라믹학회지
    • /
    • 제21권3호
    • /
    • pp.253-258
    • /
    • 1984
  • This paper deals with the reaction-bonded silicon nitride I terms of its microstructural development during nitrida-tion. Silicon powder compacts were reacted with nitrogen at 1185$^{\circ}C$ and 13$65^{\circ}C$ according to the nitriding schedule. Microstructures of nitrided specimens were examined by means of optical and scanning electron microscope to discuss the nitridation or microstructural development at initial and intermediat stage of nitridation. Reaction products were also analysed by X-ray diffraction method at each stage of nitridation. The results indicate that ho-mogeneous and uniform microstructure with find porosity can be obtained only under the reaction condition. such as slow and relatively constant reaction rate with time.

  • PDF

Lu2O3-SiO2계 소결조제를 포함하는 Silicon Nitride의 소결 특성 및 기계적 거동 (Densification and Mechanical Properties of Silicon Nitride Containing Lu2O3-SiO2 Additives)

  • 이세훈;조춘래;박영조;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.384-389
    • /
    • 2011
  • Gas pressure sintering (GPS) of reaction bonded silicon nitride (RBSN) was performed using $Lu_2O_3-SiO_2$ additive and the properties were compared with those of specimens prepared using high purity $Si_3N_4$ powder. The relative density of RBSN and compacted $Si_3N_4$ powder were 68.9 and 47.1%, and total linear shrinkage after sintering at $1900^{\circ}C$ were 14.8 and 42.9%, respectively. High nitrogen partial pressure (5MPa) was required during sintering at $1900^{\circ}C$ in order to prevent the decomposition of the nitride and to promote the formation of SiC. The relative density and 4-point bending strength of RBSN and $Si_3N_4$ powder compact were 97.7%, 954MPa and 98.2%, 792MPa, respectively, after sintering at $1900^{\circ}C$. The sintered RBSN also showed high fracture toughness of 9.2MPam$^{1/2}$.