• Title/Summary/Keyword: Reaction solution

Search Result 3,390, Processing Time 0.026 seconds

Synthesis and Characterization of Bis(5,6-dihydro-1,4-dithiin-2,3-dithiolato)nickel(II), nickel(III) and of Related Dialkyl Nickel(III) Dithiolene Complexes

  • 김영진;최성낙;오영희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.1022-1028
    • /
    • 1997
  • The reaction between Ni(Ⅱ) and sodium salt of 5,6-dihydro-1,4-dithiin-2,3-dithiolate (DDDT2-) in the presence of oxygen results in the formation of Ni(Ⅲ) species, Ni(DDDT)2-, which is isolated as tetraalkylammonium salt. The same reaction performed in the absence of oxygen yields dianionic Ni(Ⅱ) species, Ni(DDDT)22-, which is also isolated as the tetraethylammonium salt. The bis(5,6-dihydro-1,4-dithiin-2,3-dithiolato) nickelate (Ⅱ) dianion, Ni(DDDT)22-, reacts with methyl iodide to yield unusually stable bis(methylthio)dithiolene complex, Ni(CH3)2C8H8S8. All the isolated dithiolato-nickel(Ⅱ) and nickel(Ⅲ) complexes are characterized by 1H NMR, UV/Vis, IR and mass spectroscopic methods. The internal redox reaction of the nickel(Ⅱ)-dithiolate has been studied by spectro-electrochemical method and the results were compared with those of other metal-dithiolenes. The alkylated nickel(dithiolene) complex presumably undergoes cis-trans isomerization reaction in solution, judging from the experimental results of variable-temperature 1H NMR measurements.

Electrostatic Interaction Between Oligopeptides and Phosphate Residues by Determination of Absolute Raman Intensities

  • Kye-Taek Lim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.286-289
    • /
    • 1991
  • The changed isotropic absolute Raman intensities of the phosphate residue in the complexes of positive charge oligopeptides, lys-lys, arg-arg, lys-aromat-lys, negative charge diethyl phosphoric acid (DEP) and polyriboadenylic acid{poly(rA)} were reported and discussed. Our measurements showed that the absolute intensities of phosphate stretch vibration in complexes were different according to the reaction partners. Due to the partial electrical charge and molecular structure of oligopeptides for the complex formation lysine can interact more strongly than arginine when the reaction partners have short chain and no steric hindrance. Owing to these reasons the intensity of phosphate stretching vibration is very sensitive according to the circumstance of reaction. From our results we could suggest that we can discriminate any one of the the lysine and arginine in the complicated biological molecule during interaction between nucleotides and proteins. The activity of reaction of two basical oligopeptides is not quite similar for complex formation in aqueous solution. The activity of dipeptides depends upon the structure of molecule and environment for complex formation. Aromatic ring contributes to electrostatic interaction in complexes. The amount of the absolute intensity for pure stacking interaction is smaller than electrostatic interaction in macromolecular complexes.

Solvent Extraction of Cobalt Chloride from Strong Hydrochloric Acid Solutions by Alamine336 (진한 염산용액에서 Alamine336에 의한 염화코발트의 용매추출)

  • Lee, Man-seung;Lee, Jin-Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Solvent extraction reaction of cobalt by Alamine336 from strong hydrochloric acid solution was identified by analyzing the solvent extraction data reported in the literature. Analysis of the data by graphical method revealed that Alamine336 took part in the solvent extraction reaction as a monomer in the concentration ranges, [Co(II)] : 0.0169 - 0.102 M, [Alamine336] ; 0.02- 1.75 M, and [HCl ] : 5 - 10 M. The following solvent extraction reaction and equilibrium constant was obtained from the experimental data by considering the activity coefficients of chemical species present in the aqueous phase. $Co^{2+}+2Cl^{-}+R_3NHCl_{org}=CoCl_3\;R_3NH_{org}$, $K_{ex}=2.21$ The distribution coefficients of cobalt predicted in this study agreed well with those reported in the literature.

Ni Foam-Supported Ni Nanoclusters for Enhanced Electrocatalytic Oxygen Evolution Reaction

  • Hoeun Seong;Jinhee Kim;Kiyoung Chang;Hyun-woo Kim;Woojun Choi;Dongil Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.243-251
    • /
    • 2023
  • Developing oxygen evolution reaction (OER) electrocatalysts is essential to accomplish viable CO2 and water electrolysis. Herein, we report the fabrication and OER performance of Ni-foam (NF)-immobilized Ni6 nanoclusters (NCs) (Ni6/NF) prepared by a dip-coating process. The Ni6/NF electrode exhibited a high current density of 500 mA/cm2 for the OER at an overpotential as low as 0.39 V. Ni6/NF exhibited high durability in an alkaline solution without corrosion. Electrokinetic studies revealed that OER can be easily initiated on Ni6 NC with fast electron-transfer rates. Finally, we demonstrated stable CO2-to-CO electroreduction using an NC-based zero-gap CO2 electrolyzer operated at a current density of 100 mA/cm2 and a full-cell potential of 2.0 V for 12 h.

SORET AND ELECTROMAGNETIC RADIATION EFFECT OF MHD MICRO POLAR FLUID PAST A POROUS MEDIUM IN THE PRESENCE OF CHEMICAL REACTION

  • SHEEBA JULIET S.;VIDHYA, M.
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.1085-1102
    • /
    • 2023
  • In this study the magneto hydrodynamic (MHD) micro polar fluid flow of a viscous incompressible fluid past a porous medium in the presence of chemical reaction is considered. This work is devoted to investigate the Soret effect and Electromagnetic radiation effect and analyze analytically. In the energy equation the applied magnetic field strength and in the concentration equation the Soret effect are incorporated. The basic PDE (partial differential equations) are reduced to ODE (ordinary differential equations) using non dimensional variables. Then the analytical solution of the dimensionless equations are found using perturbation technique. The features of the fluid flow parameters are analyzed, discussed and explained graphically. The graphical solutions are found using MATLAB R2019b. Skin friction coefficient at the wall, Couple stress coefficient at the plate and the local surface heat flux are also thoroughly examined. Overall, this study sheds light on the complex interplay between physical parameters in the behavior of MHD micro-polar fluid past a porous medium in the presence of chemical reaction.

Characteristics of Decomposition for Refractory Organic Compounds in Aqueous Solution by Sonolysis and Electrolysis (초음파와 전기분해를 이용한 수중의 난분해성 유기물질의 분해 특성)

  • Jeong, Jae-Baek;Lee, Seong-Ho;Bae, Jun-Ung
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.454-463
    • /
    • 2006
  • refractory organic compounds in aqueous solution are not readily removed by the existing conventional wastewater treatment process. In recent years, the sonolysis and electrochemical oxidation process had been shown to be promising for wastewater treatment due to the effectiveness and easiness in operation. This study was performed to investigate the characteristics of sonolytic and electrolytic decomposition as the basic data for development of the wastewater treatment process. Trichloroethylene(TCE) and 2,4- dichlorophenol(2,4-DCP) were used as the samples, and their destruction efficiency were measured with various operating parameters, such as initial solution concentration, initial solution pH, reaction temperature, sonic power and current density. Also, the decomposition mechanism conformed indirectly with the effect of NaHCO3 as a radical scavenger on the decomposition reaction. Thermal decompositon reaction is predominant for TCE but thermal and radical decompositon reactions were dominant for 2,4-DCP. Results showed that the destruction efficiencies of all samples were above 65% within 120 minutes by sonolysis and electrolysis at the same time, and were increased with increasing initial concentration, sonic power and current density. Destruction efficiency of TCE was high in the acidic solution, but 2,4-DCP showed high destruction efficiency in basic solution.

Eutectic structure evolution of Al2O3-ZrO2-Y2O3 system for apotential hybrid solar cell application

  • Han, Young-Hwan;Yun, Jon-Do;Harada, Yohei;Jeong, Young-Keun;Makino, Taro;Kim, Kwang-Ho;Kwon, Se-Hun;Kim, Young-Moon;Kakegawa, Kazuyuki
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.11.1-11.1
    • /
    • 2009
  • Ternary Al2O3.ZrO2.Y2O3 samples with a eutecticcomposition were prepared by slow cooling. The microstructural evolution wasobserved with X-ray diffraction (XRD), scanning electron microscopy (SEM). TheSEM observation of the ternary samples agreed with the XRD with a completion ofcrystallisation by slow cooling. The target materials commonly have 'cantaloupe skin' microstructures as shown inthe previous studies by Han et al. The nanocomposite may have experienceddifferent cooling rates with two different microstructures, near the surfacehaving experienced optimal conditions for the eutectic reaction during theircooling and thus formed the eutectic microstructure, near the centre havingexperienced a slower cooling rate. The crystallised eutectic ternary Al2O3.ZrO2.Y2O3 system had three different phaseswith a 3Y2O3. 5Al2O3 (yttrium.aluminiumgarnet phase), an alumina phase formed by the eutectic reaction, and a solidsolution of ZrO2 and Y2O3.

  • PDF

Preparations of PZT Ceramic by Solution Combustion Synthesis (용액연소합성방법에 의한 PZT세라믹의 제조)

  • 이상진;윤존도;권혁보;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.74-78
    • /
    • 2002
  • In this study, the solution combustion method was employed to synthesize perovskite PZT ceramics. Multicomponent oxides can be prepared by the solution combustion synthesis using redox exothermic reaction of precursor solutions. The results of DTA/TG showed exothermic peaks in 214$^{\circ}C$ and 350$^{\circ}C$. Those were caused by the differences of the thermal decomposition behavior of oxidizer and fuel. The combustion reaction was completed at 370$^{\circ}C$ during heating procedure, but the product was not transformed into perovskite. The thermal decomposition behavior of both oxidizer and fuel were considered during solution combustion process at 600$^{\circ}C$, which showed tetragonal single phase PZT ceramics with 50 nm crystalline size. The lattice constant a was 3.997 ${\pm}$ 0.001 ${\AA}$ and the lattice constant c was 4.147${\pm}$0.001 ${\AA}$.

Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin (황산용액(黃酸溶液)으로부터 이온교환수지(交換樹脂) Lewatit TP 220에 의한 니켈의 회수(回收))

  • Kang, Nam-Hee;Park, Kyung-Ho;Parhi, P.K.
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2011
  • The adsorption of nickel(Ni) from sulfuric acid solution was carried out by ion exchange method. A series of batch tests in synthetic solutions were carried out using Lewatit Monoplus TP 220 resin. The following experimental parameters, such as temperature, shaking rate, reaction time, pH, resin dosage and concentration of nickel ions etc. were investigated to establish the effective optimum conditions of nickel adsorption. The solution pH(2.0~5.0) and shaking rate had little effects on the adsorption of nickel and adsorption time of 72hours was required to reach equilibrium. The experimental results show a good agreement with Feundlich isotherm and pseudo-second order reaction. The adsorption behavior of Ni obtained from synthetic solution was compared with that of waste electroplating solution. Elution of nickel from loaded resin increased with increase in $H_2SO_4$ concentration.

Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process (Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 1999
  • The effect of hydrogen peroxide on pretreatment of oakwood was investigated. Reaction temperature was $170^{\circ}C$ and reaction solutions used in pretreatment were aqueous ammonia, sulfuric acid and pure water. When 10% ammonia solution was used, the extents of delignification and hemicellulose recovery were 55% and 26%, respectively. These values were significantly higher as delinigfication and lower as hemicellulose recovery than those of acid hydrolysis. To overcome this problem, hydrogen peroxide was added into ammonia solution stream to increase hemicellulose recovery. But delignification and hemicellulose recovery were not increased as much as hydrogen peroxide loading was increased. And as hydrogen peroxide loading was increased, the decomposition of sugars solubilized from hemicellulose and cellulose were increased. So there were significant differences between the total amount in solid residue and liquid hydrolyzate, and the total amount in the original biomass. It was found that hydrogen peroxide added was reacted with substrate packed mostly in the front part of reactor. In order to increase hemicellulose recovery, it was necessary to treat with acidic solution than with alkali solution. Effect of hydrogen peroxide was higher in water than acid solution.

  • PDF