• Title/Summary/Keyword: Reaction region

Search Result 1,142, Processing Time 0.029 seconds

Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed (금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발)

  • Nam, Jinmoo;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

Sleet Jump Simulation of Power Transmission Line by Using Multi-Body Dynamics (다물체 동역학을 이용한 송전선의 슬릿점프 시뮬레이션)

  • Kim, Ji-Wook;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.431-439
    • /
    • 2017
  • Since the power transmission line(PTL) passes through the high mountain and heavy snowfall region, it is necessary to keep the stability of the PTL. In this study, PTL is modeled as a mass-spring-damper system by using RecurDyn. The lumped mass model is verified by calculated from the simulation comparing the deflection analysis according to the sag and tension. In order to analyze the dynamic behavior of PTL, a damping coefficient for a multi-body model is derived by using the free vibration test and Rayleigh damping theory. Sleet jump simulation according to the region is performed. The maximum jump height, icing sag and amount of jump are confirmed. Also, the amount of jump and the reaction force at the supporting point according to the tension and load of ice are analyzed, respectively. As a result, it is noted that the amount of jump and reaction force are influenced more by the load of ice than by the tension of PTL.

Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery (실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가)

  • Kim, Eun-Ji;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

Electrochemical Study on the 3-Phenyl-4-Nitrosydnone (3-Phenyl-4-Nitrosydnone의 전기화학적 연구)

  • Il-Kwang Kim;Youn-Geun Kim;Soon-Jong Han
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.195-202
    • /
    • 1988
  • An electrochemical reduction on the 3-phenyl-4-nitrosydnone in acetonitrile solution has been studied by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. Before the cleavage of phenyl-N single bond a irreversible electron transfer-chemical reaction(EC) mechanism of nitro functional group proceeded to form amino (or-hydroxylamino) group by multielectron transfer which is followed to give phenyl hydrazine by single electron transfer-chemical reaction at the 2nd and 3rd irreversible reduction wave of high negative potential region. The cathodic half-wave potentials shown to be shift negative due to inhibitory effect of cetyl-trimethyl ammonium bromide micelle while reversible anodic peaks on the 2nd and 3rd reduction waves in the presence of NaLS at high negative potential region.

  • PDF

Numerical analysis of NOx formation characteristics in CH$_{4}$-air jet diffusion flame (CH$_{4}$-공기 분류 확산화염의 NOx 생성특성에 관한 수치해석)

  • O, Chang-Bo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.193-204
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymmetric 2-D CH$_{4}$ jet diffusion flame. Calculations were carried out twice with the $C_{2}$-Thermal Mechanism including $C_{2}$ and thermal NO reactions and the $C_{2}$-Full Mechanism including prompt NO reactions in addition to the above $C_{2}$-Thermal NO mechanism. The results show that the flame structures such as flame temperature, major and minor species concentration are indifferent to respective mechanisms. The production path of Thermal NO is dominant comparing with that of Prompt NO in total NO production of pure CH$_{4}$ jet diffusion flame. This is because thermal NO mechanism mainly contributes to positive formation of NO in the whole flame region, but Prompt NO mechanism contributes to negative formation in the fuel rich region. In addition, 0$_{2}$ penetration near the nozzle outlet affects the flame structures, especially N0$_{2}$ formation characteristics.

Epidemiological Studies on the Methicillin Resistant Staphylococcus aureus Isolated from Clinical Samples (임상가검물에서 분리한 Methicillin내성 Staphylococcus aureus의 분자역학적 연구)

  • Yang-Hyo Oh;Min-Jung Kim
    • Biomedical Science Letters
    • /
    • v.5 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • A total of 45 Staphylococcus aureus strains from clinical samples were tested for the biochemical test and antibiotic susceptibility test. Forty-five S. aureus strains were subjected to the molecular epidemiological study by susceptiblity test, antibiogram, bacteriophage typing, polymerase chain reaction and mec-associated hypervariable region gene in order to detect of mecA gene which was one of the structural gene related to antibiotic resistant expression factors. Three of 15 mecA-negative S. aureus isolates were classified as oxacillin resistant despite borderline minimal inhibitory concentration values. Methicillin susceptiblities were completely consistent with PCR results for these strains. On the other hand, 4 of 30 mecA-positive isolates yielded results in the oxacillin and methicillin susceptibility tests which were discrepant from those of PCR analysis. Except for SA6, the methicillin resistant S. aureus strains tested were highly resistant to penicillin, oxacillin, gentamicin, and chloramphenicol. In the phage typing, 27 strains were typable. The Iytic group III was as many as 12 strains, and 7 of 12 were 75/83A/84 type. In the PCR of specific mecA gene probe with chromosomal DNA of 30 methicillin resistant S. aureus, the amplified DNA band of 533 bp was confirmed in 30 strains and not in methicillin sensitive S. aureus. The single amplified band of hypervariable region related to mec was investigated in all of 30 methicillin resistant S. aureus, but in methicillin sensitive S. aureus it was amplified. The size of PCR products was between 200 bp and 600 Up. Four units was directly repeated.

  • PDF

Use of 16S-23S rRNA Intergenic Spacer Region for Rapid Detection of Vibrio fluvialis (16S-23S rRNA Intergenic Spacer Region을 이용한 Vibrio fluvialis의 검출)

  • 강현실;허문수;이제희
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • We have examined the 16S-23S rRNA intergenic spacer regions (ISR) of Vibrio fluvialis. ISRs were PCR amplified, cloned into a plasmid vector and then sequenced. As results of ISR nucleotide sequence analysis, total of 6 clones were isolated depending on the size. The clones were different in both the number and the composition of the tRNA genes, and were designated ISR-A, ISR-E, ISR-El, ISR-lA, ISR-EKV, ISR-EKAV. ISR-A contains $tRNA^{Ala}$; ISR-lA, $tRNA^{Ile}$-$tRNA^{Ala}$; ISR-EKV, $tRNA^{GIu}$-$tRNA^{Lys}$-$tRNA^{Val}$;ISE-EKAV, $tRNA^{GIu}$-$tRNA^{Lys}$-$tRNA^{Ala}$-$tRNA^{Val}$; ISR -E and E1, $tRNA^{GIu}$ clusters. ISR-EKV was shown to be a minor type out of the six ISR types and showed a very limited homology between ISR-EKV from V, fluvialis and ISRa from other Vibrio species. Therefore ISR-EKV sequence was used to design species-specific primers to detect V, fiuvialis from other Vibrio species by PCR reaction. The specificity of the primers was examined using genomic DNA of other Vibrios as templates for PCR reaction. The result showed that PCR can be a useful method to detect V. fluvialis among Vibrio species in a single PCR reaction.

Improving CO2 Adsorption Performance of Activated Carbons Treated by Plasma Reaction with Tetrafluoromethane (사불화탄소 플라즈마 반응에 의해 처리된 활성탄소의 CO2 흡착 성능 향상)

  • Chung Gi Min;Chaehun Lim;Seo Gyeong Jeong;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • CO2 is known as one of the causes of global warming, and various studies are being conducted to capture it. In this study, a tetrafluoromethane (CF4) plasma reaction was performed to improve the CO2 adsorption of activated carbons (ACs) through changes in surface characteristics, and the adsorption characteristics according to the reaction time were considered. After the reaction, the micropore volume increased up to 1.03 cm3/g. In addition, as the reaction time increased, the fluorine content on the surface increased to 0.88%. It was possible to simultaneously control the pore properties and surface functional groups of the ACs through this experiment. Also, the CO2 uptake of surface-treated ACs improved up to 7.44% compared to untreated ACs, showing the best performance at 3.90 mmol/g when the reaction time was 60 s. This is due to the synergy effect of the fluorine functional groups introduced on the surface of the ACs and the increased micropore volume caused by the etching effect. It was found that the micropore volume had a greater effect on CO2 adsorption in the region where the CO2 uptake was less than 3.67 mmol/g, while the added fluorine content had a greater effect in the region above that.