DOI QR코드

DOI QR Code

Improving CO2 Adsorption Performance of Activated Carbons Treated by Plasma Reaction with Tetrafluoromethane

사불화탄소 플라즈마 반응에 의해 처리된 활성탄소의 CO2 흡착 성능 향상

  • Chung Gi Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seo Gyeong Jeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongjae Myeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 민충기 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 정서경 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2023.02.17
  • Accepted : 2023.03.09
  • Published : 2023.04.10

Abstract

CO2 is known as one of the causes of global warming, and various studies are being conducted to capture it. In this study, a tetrafluoromethane (CF4) plasma reaction was performed to improve the CO2 adsorption of activated carbons (ACs) through changes in surface characteristics, and the adsorption characteristics according to the reaction time were considered. After the reaction, the micropore volume increased up to 1.03 cm3/g. In addition, as the reaction time increased, the fluorine content on the surface increased to 0.88%. It was possible to simultaneously control the pore properties and surface functional groups of the ACs through this experiment. Also, the CO2 uptake of surface-treated ACs improved up to 7.44% compared to untreated ACs, showing the best performance at 3.90 mmol/g when the reaction time was 60 s. This is due to the synergy effect of the fluorine functional groups introduced on the surface of the ACs and the increased micropore volume caused by the etching effect. It was found that the micropore volume had a greater effect on CO2 adsorption in the region where the CO2 uptake was less than 3.67 mmol/g, while the added fluorine content had a greater effect in the region above that.

CO2는 지구온난화의 원인 중 하나로 알려져 있으며 포집을 위하여 다양한 연구가 진행되고 있다. 본 연구에서는 표면특성 변화를 통하여 활성탄소의 CO2 흡착 능력을 향상시키고자 사불화탄소 플라즈마 반응을 진행하였으며, 반응 시간에 따른 흡착 특성을 고찰하였다. 플라즈마 반응 이후 활성탄소의 미세기공 부피가 모두 늘어났으며, 최대 1.03 cm3/g까지 증가하였다. 또한 반응 시간의 증가에 따라 활성탄소 표면에 존재하는 불소 함량이 0.88%까지 증가하였다. 결과적으로 본 실험을 통하여 활성탄소의 기공 특성과 표면 작용기를 동시에 조절할 수 있었다. 본 연구에서 표면처리된 활성탄소의 CO2 흡착량은 미처리 활성탄소에 비하여 최대 7.44%까지 향상되어, 반응 시간이 60 s일 때 3.90 mmol/g으로 가장 우수한 성능을 보였다. 이는 활성탄소 표면에 도입된 불소 작용기와 식각 효과에 의하여 증가된 미세기공 부피에 의한 시너지 효과 때문으로 판단된다. 또한, CO2 흡착량이 3.67 mmol/g보다 낮은 구간에서는 미세기공의 부피가 CO2 흡착에 더 큰 영향을 미쳤으며, 그보다 높은 구간에서는 도입된 불소의 함량이 더 큰 영향을 미치는 것을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. N. P. Wickramaratne and M. Jaroniec, Activated Carbon Spheres for CO2 Adsorption, ACS Appl. Mater. Interfaces, 5, 1849-1855 (2013). https://doi.org/10.1021/am400112m
  2. E. Gomez-Delgado, G. V. Nunell, A. L. Cukierman and P. R. Bonelli, Development of microporous-activated carbons derived from two renewable precursors for CO2 capture, Carbon Lett., 30, 155-164 (2020). https://doi.org/10.1007/s42823-019-00079-z
  3. O. F. Cruz, I. Campello-Gomez, M. E. Casco, J. Serafin, J. Silvestre-Albero, M. Martinez-Escandell, D. Hotza and C. R. Rambo, Enhanced CO2 capture by cupuassu shell-derived activated carbon with high microporous volume, Carbon Lett., https://doi.org/10.1007/s42823-022-00454-3 (2022).
  4. Y. Tan, W. Nookuea, H. Li, E. Thorin and J. Yan, Property impacts on Carbon Capture and Storage (CCS) processes: A review, Energy Convers. Manag., 118, 204-222 (2016). https://doi.org/10.1016/j.enconman.2016.03.079
  5. U. Morali, H. Demiral and S. Sensoz, Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method, Powder Technol., 355, 716-726 (2019). https://doi.org/10.1016/j.powtec.2019.07.101
  6. B. Petrovic, M. Gorbounov and S. M. Soltani, Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous Mesoporous Mater., 312, 110751 (2021).
  7. M. Danish, V. Parthasarthy and M. K. Al Mesfer, CO2 capture using activated carbon synthesized from date stone: breakthrough, equilibrium, and mass-transfer zone, Carbon Lett., 31, 1261-1272 (2021). https://doi.org/10.1007/s42823-021-00249-y
  8. J. Y. Lai, L. H. Ngu, S. S. Hashim, J. J. Chew and J. Sunarso, Review of oil palm-derived activated carbon for CO2 capture, Carbon Lett., 31, 201-252 (2021). https://doi.org/10.1007/s42823-020-00206-1
  9. S. Park, M. S. Choi and H. S. Park, Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity, Carbon Lett., 29, 289-296 (2019). https://doi.org/10.1007/s42823-019-00025-z
  10. Z. Y. Feng and L. Y. Meng, Hierarchical porous carbons derived from corncob: study on adsorption mechanism for gas and wastewater, Carbon Lett., 31, 643-653 (2021). https://doi.org/10.1007/s42823-021-00231-8
  11. J. Han, K. Lee, M. S. Choi, H.S. Park, W. Kim and K. C. Roh, Chlorella-derived activated carbon with hierarchical pore structure for energy storage materials and adsorbents, Carbon Lett., 29, 167-175 (2019). https://doi.org/10.1007/s42823-019-00018-y
  12. S. Deng, B. Hu, T. Chen, B. Wang, J. Huang, Y. Wang and G. Yu, Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption, Adsorption, 21, 125-133 (2015). https://doi.org/10.1007/s10450-015-9655-y
  13. C. Lim, C. H. Kwak, S. G. Jeong, D. Kim and Y. S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2022).
  14. D. Saha and M. J. Kienbaum, Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review, Microporous Mesoporous Mater., 287, 29-55 (2019). https://doi.org/10.1016/j.micromeso.2019.05.051
  15. Y. Xu, X. Chen, D. Wu, Y. Luo, X. Liu, Q. Qian, L. Xiao and Q. Chen, Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation, Carbon Lett., 25, 68-77 (2018). https://doi.org/10.5714/CL.2018.25.068
  16. H. Touhara and F. Okino, Property control of carbon materials by fluorination, Carbon, 38, 241-267 (2000). https://doi.org/10.1016/S0008-6223(99)00140-2
  17. M. J. Kim, M. J. Jung, S. S. Choi and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ACE.2015.1050
  18. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  19. A. Tressaud, E. Durand and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluor. Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  20. M. J. Kim, M. J. Jung, M. I. Kim, S. S. Choi and Y. S. Lee, Adsorption characteristics of toluene gas using fluorinated phenolbased activated carbons, Appl. Chem. Eng., 26, 587-592 (2015). https://doi.org/10.14478/ACE.2015.1083
  21. K. H. Kim, M. J. Kim, J. W. Kim, K. M. Lee, H. G. Kim and Y. S. Lee, Enhanced creep behavior of carbon black/epoxy composites with high dispersion stability by fluorination, Carbon Lett., 29, 643-648 (2019). https://doi.org/10.1007/s42823-019-00075-3
  22. R. Lee, C. Lim, M. J. Kim and Y. S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  23. E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi and Y. S. Lee, Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
  24. S. Kim, C. Lim, D. Kim and Y. S. Lee, Surface and corrosion protection properties of fluorine doped PVDF by plasma fluorination, Appl. Chem. Eng., 32, 653-658 (2021). https://doi.org/10.14478/ACE.2021.1079
  25. Y. Tian, X. Zhang, Y. Wang, Z. Cui and J. Tang, SF6 abatement in a packed bed plasma reactor: Role of zirconia size and optimization using RSM, J. Ind. Eng. Chem., 94, 205-216 (2021). https://doi.org/10.1016/j.jiec.2020.10.035
  26. H. R. Yu, S. Cho, B. C. Bai, K. B. Yi and Y. S. Lee, Effects of fluorination on carbon molecular sieves for CH4/CO2 gas separation behavior, Int. J. Greenh. Gas Control., 10, 278-284 (2012). https://doi.org/10.1016/j.ijggc.2012.06.013
  27. H. Sugiyama and Y. Hattori, Selective and enhanced CO2 adsorption on fluorinated activated carbon fibers, Chem. Phys. Lett., 758, 137909 (2020).