Acknowledgement
본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.
References
- N. P. Wickramaratne and M. Jaroniec, Activated Carbon Spheres for CO2 Adsorption, ACS Appl. Mater. Interfaces, 5, 1849-1855 (2013). https://doi.org/10.1021/am400112m
- E. Gomez-Delgado, G. V. Nunell, A. L. Cukierman and P. R. Bonelli, Development of microporous-activated carbons derived from two renewable precursors for CO2 capture, Carbon Lett., 30, 155-164 (2020). https://doi.org/10.1007/s42823-019-00079-z
- O. F. Cruz, I. Campello-Gomez, M. E. Casco, J. Serafin, J. Silvestre-Albero, M. Martinez-Escandell, D. Hotza and C. R. Rambo, Enhanced CO2 capture by cupuassu shell-derived activated carbon with high microporous volume, Carbon Lett., https://doi.org/10.1007/s42823-022-00454-3 (2022).
- Y. Tan, W. Nookuea, H. Li, E. Thorin and J. Yan, Property impacts on Carbon Capture and Storage (CCS) processes: A review, Energy Convers. Manag., 118, 204-222 (2016). https://doi.org/10.1016/j.enconman.2016.03.079
- U. Morali, H. Demiral and S. Sensoz, Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method, Powder Technol., 355, 716-726 (2019). https://doi.org/10.1016/j.powtec.2019.07.101
- B. Petrovic, M. Gorbounov and S. M. Soltani, Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous Mesoporous Mater., 312, 110751 (2021).
- M. Danish, V. Parthasarthy and M. K. Al Mesfer, CO2 capture using activated carbon synthesized from date stone: breakthrough, equilibrium, and mass-transfer zone, Carbon Lett., 31, 1261-1272 (2021). https://doi.org/10.1007/s42823-021-00249-y
- J. Y. Lai, L. H. Ngu, S. S. Hashim, J. J. Chew and J. Sunarso, Review of oil palm-derived activated carbon for CO2 capture, Carbon Lett., 31, 201-252 (2021). https://doi.org/10.1007/s42823-020-00206-1
- S. Park, M. S. Choi and H. S. Park, Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity, Carbon Lett., 29, 289-296 (2019). https://doi.org/10.1007/s42823-019-00025-z
- Z. Y. Feng and L. Y. Meng, Hierarchical porous carbons derived from corncob: study on adsorption mechanism for gas and wastewater, Carbon Lett., 31, 643-653 (2021). https://doi.org/10.1007/s42823-021-00231-8
- J. Han, K. Lee, M. S. Choi, H.S. Park, W. Kim and K. C. Roh, Chlorella-derived activated carbon with hierarchical pore structure for energy storage materials and adsorbents, Carbon Lett., 29, 167-175 (2019). https://doi.org/10.1007/s42823-019-00018-y
- S. Deng, B. Hu, T. Chen, B. Wang, J. Huang, Y. Wang and G. Yu, Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption, Adsorption, 21, 125-133 (2015). https://doi.org/10.1007/s10450-015-9655-y
- C. Lim, C. H. Kwak, S. G. Jeong, D. Kim and Y. S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2022).
- D. Saha and M. J. Kienbaum, Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review, Microporous Mesoporous Mater., 287, 29-55 (2019). https://doi.org/10.1016/j.micromeso.2019.05.051
- Y. Xu, X. Chen, D. Wu, Y. Luo, X. Liu, Q. Qian, L. Xiao and Q. Chen, Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation, Carbon Lett., 25, 68-77 (2018). https://doi.org/10.5714/CL.2018.25.068
- H. Touhara and F. Okino, Property control of carbon materials by fluorination, Carbon, 38, 241-267 (2000). https://doi.org/10.1016/S0008-6223(99)00140-2
- M. J. Kim, M. J. Jung, S. S. Choi and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ACE.2015.1050
- Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
- A. Tressaud, E. Durand and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluor. Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
- M. J. Kim, M. J. Jung, M. I. Kim, S. S. Choi and Y. S. Lee, Adsorption characteristics of toluene gas using fluorinated phenolbased activated carbons, Appl. Chem. Eng., 26, 587-592 (2015). https://doi.org/10.14478/ACE.2015.1083
- K. H. Kim, M. J. Kim, J. W. Kim, K. M. Lee, H. G. Kim and Y. S. Lee, Enhanced creep behavior of carbon black/epoxy composites with high dispersion stability by fluorination, Carbon Lett., 29, 643-648 (2019). https://doi.org/10.1007/s42823-019-00075-3
- R. Lee, C. Lim, M. J. Kim and Y. S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
- E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi and Y. S. Lee, Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
- S. Kim, C. Lim, D. Kim and Y. S. Lee, Surface and corrosion protection properties of fluorine doped PVDF by plasma fluorination, Appl. Chem. Eng., 32, 653-658 (2021). https://doi.org/10.14478/ACE.2021.1079
- Y. Tian, X. Zhang, Y. Wang, Z. Cui and J. Tang, SF6 abatement in a packed bed plasma reactor: Role of zirconia size and optimization using RSM, J. Ind. Eng. Chem., 94, 205-216 (2021). https://doi.org/10.1016/j.jiec.2020.10.035
- H. R. Yu, S. Cho, B. C. Bai, K. B. Yi and Y. S. Lee, Effects of fluorination on carbon molecular sieves for CH4/CO2 gas separation behavior, Int. J. Greenh. Gas Control., 10, 278-284 (2012). https://doi.org/10.1016/j.ijggc.2012.06.013
- H. Sugiyama and Y. Hattori, Selective and enhanced CO2 adsorption on fluorinated activated carbon fibers, Chem. Phys. Lett., 758, 137909 (2020).