• Title/Summary/Keyword: Reaction pathway(s)

Search Result 157, Processing Time 0.029 seconds

Kinetics of the Solvolysis of 1-Adamantyl Fluoroformate under High Pressure (고압하에서 1-Adamantyl Fluoroformate의 가용매분해반응에 대한 속도론적 연구)

  • Kyong Jin Burm;Dennis N. Kevill;Kim Jong Chul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.3-9
    • /
    • 1993
  • Specific rates of solvolysis of 1-adamantyl fluoroformate in hydroxylic solvents have been measured by an electric conductivity method under various pressures. The activation parameters (${\Delta}V^{\neq}{_o},\;{\Delta}{\beta}^{\neq},\;{Delta}H^{\neq},\;{Delta}S^{\neq}$,/TEX>) and average pressure within the solvation-shell of activated complex (charge development) have been estimated from the rates. Also, the selectivities for the formation of solvolysis products in aqueous ethanol have been determined by response-calibrated GC. The values of ${\Delta}V^{\neq}{_o},\;and\;{\Delta}{\beta}^{\neq}$ are both negative, but ${Delta}H^{\neq}$ is positive and ${Delta}S^{\neq}$, is large negative. This behavior is discussed in terms of electrostriction of solvation. From these results, it could be postulated that the solvolysis of 1-adamantyl fluoroformate have two major reaction pathway.

  • PDF

Removal of TNT Reduction Products via Oxidative-Coupling Reaction Using Manganese Oxide (망간산화물을 이용한 TNT 환원부산물의 산화-결합반응에 의한 제거 연구)

  • Kang, Ki-Hoon;Lim, Dong-Min;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.476-485
    • /
    • 2005
  • In this study, abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, $k_{surf}$, were determined. As expected, $k_{surf}$ of diaminonitrotoluenes (DATs) ($1.49{\sim}1.91\;L/m^2{\cdot}day$) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) ($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$) due to the increased number of amine group. In addition, by comparing the value of $k_{surf}$ between DNTs or DATs, amino group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using $Fe^0$ followed by oxidative coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

The Effect of Aralia Cordata Thunb and Cimicifuga Heracleifolia on Cartilage Protection by the Regulation of Metabolism in Human Osteoarthric Chondrocytes (퇴행성 관절염에 대한 독활.승마 복합처방의 대사조절을 통한 연골보호 효과)

  • Shin, Ye-Ji;Beak, Yong-Hyeon;Park, Dong-Suk;Kim, Jae-Kyu;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.27 no.4
    • /
    • pp.39-53
    • /
    • 2010
  • 목적 : 퇴행성 관절염은 염증성 사이토카인인 IL-$1\beta$에 의해 연골관절이 파괴되고 이로 인해 염증성 사이토카인이 더욱 증가하는 질환이다. 퇴행성 관절염을 치료하기 위해서는 연골 파괴를 가속화시키는 catabolic cytokines의 활성을 줄이고, 성장인자인 anabolic factor의 활성을 증가시는 연골 보호 작용이 있어야 한다. 본 연구에서는 독활 승마 처방(OAH19T)이 catabolic/anabolic 대사 조절에 어떤 영향을 미치는지와 그 신호 전달 기전에 대해 연구하였다. 또한 OAH19T를 구성하는 단미재 및 임상에서 사용되는 COX-2 inhibitor인 Celebrex(CEL)와 효능을 비교 실험하였다. 방법 : 배양된 세포에 IL-$1\beta$로 자극한 후 (1) glycosaminoglycan(GAG)의 분해 억제 정도, (2) OAH19T와 CEL에 대하여 MMP-1과 MMP-3의 유전자 발현 및 활성 억제, (3) Aggrecan 및 Aggrecanases의 유전자 발현 및 활성 억제, (4) OAH19T의 growth factor의 조절 능력, (5) MAPK pathway 등을 RT-PCR(reverse transcriptase-polymerase chain reaction), ELISA(Enzyme-linked immunosorbent assay), western blot, viability 측정을 통해 검증했다. 결과 : 사람 관절 세포에서 (1) 독활 승마 각각의 단미재, 임상에서 사용중인 셀레콕시브(CEL), 조인스보다 실험 약물(OAH19T)이 저농도에서 GAG 분해 억제 효과가 우수하였고, 부탄올로 분획한 OAH19B와는 동등한 효과를 보였다. (2) OAH19T는 IL-$1\beta$에 의하여 활성화된 MMP-1과 MMP-3의 발현을 모두 억제하였으나, CEL은 MMP-1의 발현은 억제하였으나 MMP-3의 발현은 억제하지 못하였다. (3) OAH19T는 IL-$1\beta$에 의하여 손상된 Aggrecan을 회복시켰으며 이는 활성화된 Aggrecanase-1과 Aggrecanase-2를 억제시킴으로써 나타난 결과이다. 그러나 CEL의 경우, 손상된 Aggrecan을 회복시키지 못하였다. (4) 배양된 세포는 IL-$1\beta$에 의하여 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현이 억제되었으나, OAH19T는 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현을 회복시켜 OAH19T가 anabolic한 조절능력이 있음을 시사한다. 그러나 CEL의 경우 growth factor에 대한 조절 능력이 없었다. (5) 대사 조절 작용에 대한 기전으로서 MAPK pathway에 대해서 연구한 결과 IL-$1\beta$에 의하여 유도된 pERK, pp38 kinase의 활성은 억제하였고, pJNK의 활성은 변하지 않았다. 또한 OAH19T는 연골 세포에 독성이 없었으며 IL-$1\beta$에 의해 유도된 세포 증식만을 억제시켰다. 이 결과로, OAH19T가 OA chondrocyte의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다. 결론 : OAH19T는 이를 구성하는 단미재 및 CEL보다 연골보호 효과가 월등하였고, 이러한 연골보호 효과는 catabolic cytokines/growth factors의 균형으로 대사조절을 통해 연골세포의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다.

Raw Inonotus obliquus polysaccharide counteracts Alzheimer's disease in a transgenic mouse model by activating the ubiquitin-proteosome system

  • Shumin Wang;Kaiye Dong;Ji Zhang;Chaochao Chen;Hongyan Shuai;Xin Yu
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1128-1142
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Inonotus obliquus has been used as antidiabetic herb around the world, especially in the Russian and Scandinavian countries. Diabetes is widely believed to be a key factor in Alzheimer's disease (AD), which is widely considered to be type III diabetes. To investigate whether I. obliquus can also ameliorate AD, it would be interesting to identify new clues for AD treatment. We tested the anti-AD effects of raw Inonotus obliquus polysaccharide (IOP) in a mouse model of AD (3×Tg-AD transgenic mice). MATERIALS/METHODS: SPF-grade 3×Tg-AD mice were randomly divided into three groups (Control, Metformin, and raw IOP groups, n = 5 per group). β-Amyloid deposition in the brain was analyzed using immunohistochemistry for AD characterization. Gene and protein expression of pertinent factors of the ubiquitin-proteasome system (UPS) was determined using real-time quantitative polymerase chain reaction and Western blotting. RESULTS: Raw IOP significantly reduced the accumulation of amyloid aggregates and facilitated UPS activity, resulting in a significant reduction in AD-related symptoms in an AD mouse model. The presence of raw IOP significantly enhanced the expression of ubiquitin, E1, and Parkin (E3) at both the mRNA and protein levels in the mouse hippocampus. The mRNA level of ubiquitin carboxyl-terminal hydrolase isozyme L1, a key factor involved in UPS activation, also increased by approximately 50%. CONCLUSIONS: Raw IOP could contribute to AD amelioration via the UPS pathway, which could be considered as a new potential strategy for AD treatment, although we could not exclude other mechanisms involved in counteracting AD processing.

Synthesis and electrochemical properties of cobalt sulfide-graphene oxide nanocomposites by hydrothermal method (수열합성법을 이용한 코발트 황화물-산화그래핀 나노복합체 제조 및 전기화학적 특성 연구)

  • Su Hwan Jeong;Joo-Hyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.203-209
    • /
    • 2023
  • Cobalt sulfide nanocomposites were synthesized through a simple hydrothermal method as anode materials for sodium ion batteries (SIBs). In this work, a cobalt sulfide nanoparticle (CoS-NF) and a cobalt sulfide nanocomposite integrated with reduced graphene oxide (CoS@G-NC) were fabricated for electrochemical energy storage performance of battery. The as-prepared CoS@G-NC electrode exhibited reversible and stable cycle performance (62 % after 30 cycles at current density of 200 mA g-1). The improved electrochemical property was attributed to the small grain growth and uniform distribution of cobalt sulfide during synthesis, which maximized the diffusion pathway for sodium ions and effectively suppressed the delamination and volume expansion of cobalt sulfide during the conversion reaction. The results provide promising anode materials for next-generation SIBs.

Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

  • Park, Jeong-Woong;Song, Ki-Duk;Kim, Nam Young;Choi, Jae-Young;Hong, Seul A;Oh, Jin Hyeog;Kim, Si Won;Lee, Jeong Hyo;Park, Tae Sub;Kim, Jin-Kyoo;Kim, Jong Geun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1471-1477
    • /
    • 2017
  • Objective: Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. Methods: We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Results: Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. Conclusion: It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an $NF-{\kappa}B$ signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

Screening of key miRNAs related with the differentiation of subcutaneous adipocytes and the validation of miR-133a-3p functional significance in goats

  • Xin, Li;Hao, Zhang;Yong, Wang;Yanyan, Li;Youli, Wang;Jiangjiang, Zhu;Yaqiu, Lin
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.144-155
    • /
    • 2023
  • Objective: Adipocyte differentiation is regulated by a variety of functional genes and noncoding RNAs. However, the role of miRNAs in lipid deposition of goat white adipose tissue is still unclear. Therefore, this study revealed the miRNA expression profile in goat subcutaneous adipocytes by sRNA-seq. Methods: The miRNA expressed in goat subcutaneous preadipocytes and the mature adipocytes were sequenced by sRNA-seq. The differentially expressed miRNAs (DEm) were screened and gene ontology (GO) and Kyoto encyclopedia for genes and genomes (KEGG) analyses were performed. Gain-of-function and loss-of-function combined with oil red O staining, Bodipy staining, and quantitative reverse-transcription polymerase chain reaction (qPCR) were utilized to determine the effect of miR-133a-3p on adipocyte differentiation. Results: A total of 218 DEm were screened out. The target genes of these DEm were significantly enriched in GO items such as biological regulation and in KEGG terms such as FAK signaling pathway and MAPK signaling pathway. qPCR verified that the expression trend of miRNA was consistent with miRNA-seq. The gain-of-function or loss-of-function of miR-133a-3p showed that it promoted or inhibited the accumulation of lipid droplets, and CCAAT enhancer binding protein α (C/EBPα) and C/EBPβ were extremely significantly up-regulated or down-regulated respectively (p<0.01), the loss-of-function also led to a significant down-regulation of peroxisome proliferator activated receptor gamma (PPARγ) (p<0.01). Conclusion: This study successfully identified miRNAs expression patterns in goat subcutaneous adipocytes, and functional identification indicates that miR-133a-3p is a positive regulator of the differentiation process of goat subcutaneous adipocytes. Our results lay the foundation for the molecular mechanism of lipid deposition in meat-source goats from the perspective of miRNA.

Metabolic Study on C29-Brassinosteroids in Young Rice Plants (벼 유식물을 이용한 C29-Brassinosteroids의 대사)

  • Won, So-Yun;Joo, Se-Hwan;Kim, Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2007
  • It has been recently demonstrated the presence of not only $C_{28}-BRs$ biosysnthesis, but also $C_{27}-$ and $C_{29}-BRs$ biosynthesis in plants, suggesting that BRs biosynthesis are complicatedly connected to produce biologically active BR (s). This prompted us to investigation of metabolism of a $C_{29}-BR$, 28-homoCS in seedlings of rice from which $C_{29}-BRs$ such as 28-homoTE and 28-homoTY have been identified. In vitro enzyme conversion study using a crude enzyme solution prepared from rice seedlings revealed that 28-homoCS is converted into both CS and 26-nor-28-homoCS, but their reversed reaction did not occur. This indicated that 28-homoCS is biosynthetically converted into more biologically active $C_{28}-BR$, CS by C-28 demethylation and biodegraded into 26-nor-28-homoCS by C-26 demethylation. Next, bio-conversion of 28-homoCS to 28-homoBL was examined by the same enzyme solution. No 28-homoBL as a metabolite of 28-homoCS was detected, meaning that biosynthetic reaction for 28-homoCS to 28-homoBL is not contained, and main connection of $C_{28}-BRs$ and $C_{29}-BRs$ biosynthesis is between CS and 28-homoCS in the rice seedling. This study is the first demonstrated that $C_{29}-BRs$ and $C_{28}-BRs$ bionsynthetic pathways are connected, and that $C_{29}-BRs$ biosynthetic pathway is an alternative biosynthetic pathway to produce more biologically active $C_{28}-BR$, CS in plant.

Role of tetrahydrobiopterin in dopaminergic cell death: Relevance to Parkinson's disease

  • Choi, Hyun-Jin;Hwang, On-You
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2005.04a
    • /
    • pp.53-60
    • /
    • 2005
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting $1\%$ of the population above the age of 65 and is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although the underlying cause of dopaminergic cell death or the mechanism by which these cells degenerate is still not clearly understood, oxidative stress, mitochondrial dysfunction, and protein misfolding are thought to play important roles in the dopaminergic degeneration in PD. Tetrahydrobiopterin (BH4) is synthesized exclusively in the monoaminergic, including dopaminergic, cells and serves as an endogenous and obligatory cofactor for syntheses of the potential oxidative stressors dopamine and nitric oxide. In addition to its contribution toward the syntheses of these two potentially toxic molecules, BH4 itself can directly generate oxidative stress. BH4 undergoes oxidation during the hydroxylation reaction as well as nonenzymatic autooxidation to produce hydrogen peroxide and superoxide radical. We have previously suggested BH4 as an endogenous molecule responsible for the dopaminergic neurodegeneration. BH4 exerts selective toxicity to dopamine-producing cells via generation of oxidative stress, mitochondrial dysfunction, and apoptosis. BH4 also induces morphological, biochemical, and behavioral characteristics associated with PD in vivo. BH4 as well as enzyme activity and gene expression of GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis pathway, are readily upregulated by cellular changes such as calcium influx and by various stimuli including stress situations. This points to the possibility that cellular availability of BH4 might be increased in aberrant conditions, leading to increased extracellular BH4 subsequent degeneration. The fact that BH4 is specifically and endogenously synthesized in dopaminergic cells, Is readily upregulated, and generates oxidative stress-related cell death provides physical relevance of this molecule as an attractive candidate with which to explain the mechanism of pathogenesis of PD.

  • PDF

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2- Dioxygenase from Comamonas sp.

  • Lee Na Ri;Kwon Dae Young;Min Kyung Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.16-25
    • /
    • 2001
  • A genomic library of biphenyl-degrading strain Comamonas sp. SMN4 was constructed by using the cosmid vector pWE15 and introduced into Escherichia coli. Of 1,000 recombinant clones tested, two clones that expressed 2,3-dihydroxybiphenyl 1,2-dioxygenase activity were found (named pNB 1 and pNB2). From pNB1 clone, subclone pNA210, demonstrated 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, is isolated. 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO, BphC) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the Comamonas sp. SMN4 gene bphC, which encodes 23DBDO, was cloned into a plasmid pQE30. The His-tagged 23DBDO produced by a recombinant Escherichia coli, SG 13009 (pREP4)(pNPC), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 23DBDO construction was active. SDS-PAGE analysis of the purified active 23DBDO gave a single band of 32 kDa; this is in agreement with the size of the bphC coding region. The 23DBDO exhibited maximum activity at pH 9.0. The CD data for the pHs, showed that this enzyme had a typical a-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. This structure maintained up to pH 10.5. However, this high stable folding strucure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The result of CD spectra observed with pH effects on 23DBDO activity, suggested that charge transition by pH change have affected change of conformational structure for 23DBDO catalytic reaction. The $K_m$ for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7 $\mu$M, 24 $\mu$M, 50 mM and 625 $\mu$M.

  • PDF