• Title/Summary/Keyword: Reaction monitoring

Search Result 585, Processing Time 0.03 seconds

Quantification of the ichthyotoxic raphidophyte Chattonella marina complex by applying a droplet digital PCR

  • Juhee, Min;Kwang Young, Kim
    • ALGAE
    • /
    • v.37 no.4
    • /
    • pp.281-291
    • /
    • 2022
  • Quantifying the abundance of Chattonella species is necessary to effectively manage the threats from ichthyotoxic raphidophytes, which can cause large-scale mortality of aquacultured fish in temperate waters. The identification and cell counting of Chattonella species have been conducted primarily on living cells without fixation by light microscopy because routine fixatives do not retain their morphological features. Species belonging to the Chattonella marina complex, including C. marina and C. marina var. ovata, had high genetic similarities and the lack of clear morphological delimitations between the species. To estimate the abundance of C. marina complex in marine plankton samples, we developed a protocol based on the droplet digital polymerase chain reaction (ddPCR) assay, with C. marina complex-specific primers targeting the internal transcribed spacer (ITS) region of the rDNA. Cell abundance of the C. marina complex can be determined using the ITS copy number per cell, ranging from 25 ± 1 for C. marina to 112 ± 7 for C. marina var. ovata. There were no significant differences in ITS copies estimated by the ddPCR assay between environmental DNA samples from various localities spiked with the same number of cells of culture strains. This approach can be employed to improve the monitoring efficiency of various marine protists and to support the implementation of management for harmful algal blooms, which are difficult to analyze using microscopy alone.

Dynamic data validation and reconciliation for improving the detection of sodium leakage in a sodium-cooled fast reactor

  • Sangjun Park;Jongin Yang;Jewhan Lee;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1528-1539
    • /
    • 2023
  • Since the leakage of sodium in an SFR (sodium-cooled fast reactor) causes an explosion upon reaction with air and water, sodium leakages represent an important safety issue. In this study, a novel technique for improving the reliability of sodium leakage detection applying DDVR (dynamic data validation and reconciliation) is proposed and verified to resolve this technical issue. DDVR is an approach that aims to improve the accuracy of a target system in a dynamic state by minimizing random errors, such as from the uncertainty of instruments and the surrounding environment, and by eliminating gross errors, such as instrument failure, miscalibration, or aging, using the spatial redundancy of measurements in a physical model and the reliability information of the instruments. DDVR also makes it possible to estimate the state of unmeasured points. To validate this approach for supporting sodium leakage detection, this study applies experimental data from a sodium leakage detection experiment performed by the Korea Atomic Energy Research Institute. The validation results show that the reliability of sodium leakage detection is improved by cooperation between DDVR and hardware measurements. Based on these findings, technology integrating software and hardware approaches is suggested to improve the reliability of sodium leakage detection by presenting the expected true state of the system.

Discovery of 14-3-3 zeta as a potential biomarker for cardiac hypertrophy

  • Joyeta Mahmud;Hien Thi My Ong;Eda Ates;Hong Seog Seo;Min-Jung Kang
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.341-346
    • /
    • 2023
  • Acute myocardial infarction (AMI) is a multifaceted syndrome influenced by the functions of various extrinsic and intrinsic pathways and pathological processes, which can be detected in circulation using biomarkers. In this study, we investigated the secretome protein profile of induced-hypertrophy cardiomyocytes to identify next-generation biomarkers for AMI diagnosis and management. Hypertrophy was successfully induced in immortalized human cardiomyocytes (T0445) by 200 nM ET-1 and 1 μM Ang II. The protein profiles of hypertrophied cardiomyocyte secretomes were analyzed by nano-liquid chromatography with tandem mass spectrometry and differentially expressed proteins that have been identified by Ingenuity Pathway Analysis. The levels of 32 proteins increased significantly (>1.4 fold), whereas 17 proteins (<0.5 fold) showed a rapid decrease in expression. Proteomic analysis showed significant upregulation of six 14-3-3 protein isoforms in hypertrophied cardiomyocytes compared to those in control cells. Multi-reaction monitoring results of human plasma samples showed that 14-3-3 protein-zeta levels were significantly elevated in patients with AMI compared to those of healthy controls. These findings elucidated the role of 14-3-3 protein-zeta in cardiac hypertrophy and cardiovascular disorders and demonstrated its potential as a novel biomarker and therapeutic strategy.

Monitoring of Benzimidazole Resistance in Botrytis cinerea Isolates from Strawberry in Korea and Development of Detection Method for Benzimidazole Resistance

  • Geonwoo Kim;Doeun Son;Sungyu Choi;Haifeng Liu;Youngju Nam;Hyunkyu Sang
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.614-624
    • /
    • 2023
  • Botrytis cinerea is a major fungal plant pathogen that causes gray mold disease in strawberries, leading to a decrease in strawberry yield. While benzimidazole is widely used as a fungicide for controlling this disease, the increasing prevalence of resistant populations to this fungicide undermines its effectiveness. To investigate benzimidazole resistant B. cinerea in South Korea, 78 strains were isolated from strawberries grown in 78 different farms in 2022, and their EC50 values for benzimidazole were examined. As a result, 64 strains exhibited resistance to benzimidazole, and experimental tests using detached strawberry leaves and the plants in a greenhouse confirmed the reduced efficacy of benzimidazole to control these strains. The benzimidazole resistant strains identified in this study possessed two types of mutations, E198A or E198V, in the TUB2 gene. To detect these mutations, TaqMan probes were designed, enabling rapid identification of benzimidazole resistant B. cinerea in strawberry and tomato farms. This study utilizes TaqMan real-time polymerase chain reaction analysis to swiftly identify benzimidazole resistant B. cinerea, thereby offering the possibility of effective disease management by identifying optimum locations and time of application.

Investigation of Hygiene Indicator Organisms and Listeria monocytogenes Contamination in Smoked Salmon Oncorhynchus keta Distributed in Korea (국내 유통 중인 훈제 연어(Oncorhynchus keta)의 위생지표세균 및 Listeria monocytogenes 오염도 조사)

  • Su-Jeong Lee;Eun-Woo Lee;Won Je Jang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.5
    • /
    • pp.721-727
    • /
    • 2023
  • This study was conducted to evaluate the level of microbial contamination in smoked salmon products sold in hypermarkets in major metropolitan cities in Korea. Listeria monocytogenes is the primary cause of smoked and raw salmon product recalls. Here, we used L. monocytogenes as a bacterial hygiene indicator and investigated the microbial contamination level of frozen/refrigerated smoked salmon products collected from hyper markets. Contamination levels were analyzed by seasons, manufacturers, and consumption regions. For hygiene indicator bacteria, total bacteria count, coliforms, and Escherichia coli were examined according to the food code established by the Ministry of Food and Drug Safety, and polymerase chain reaction (PCR) was performed to detect Listeria sp. The highest contamination level was observed in spring in Busan among five consumption regions. Listeria was detected at a level of 2.1% among all samples collected. And especially L. monocytogenes was detected in two cases from the samples collected from Daegu and Daejeon. Sanitary standards and specifications should be established according to the contamination level of smoked salmon products investigated in this study, and continuous monitoring is necessary.

Development and validation of ultra-fast quantitative real-time PCR method to differentiate between Oncorhynchus keta and Oncorhynchus mykiss

  • Min-Ji Park;Han-Cheol Lee;Ji-Young Yang;Jung-Beom Kim
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.383-394
    • /
    • 2023
  • The ultra-fast quantitative real-time polymerase chain reaction (qPCR) assay was developed and validated to differentiate the morphologically similar ones, Oncorhynchus keta and Oncorhynchus mykiss. Species-specific primers were designed for the COI genes of mtDNA. The species-specific primers designed for O. keta and O. mykiss were selectively amplified by O. keta and O. mykiss DNA, respectively. The sensitivity of O. keta and O. mykiss primers was 1 ng/μL. Quantitative testing showed that the results met the 'Guidelines on Standard Procedures for Preparing Analysis Method such as Food' proposed by the Ministry of Food and Drug Safety. The qPCR method developed and validated in this study for identifying O. keta and O. mykiss has advantages such as speed and field applicability. Therefore, this method is expected to help control forgery and alteration of raw materials in the seafood industry.

Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation

  • Xiong Wu;Li Cai;Xiangju Zhang;Tingyu Wu;Jieqiong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4628-4636
    • /
    • 2023
  • Cables are indispensable in nuclear power plants for transmitting data measured by various types of detectors, such as self-powered neutron detectors (SPNDs). These cables will generate disturbing signals that must be accurately distinguished and eliminated. Given that the cable current is not very significant, previous research has focused on SPND, with little attention paid to cable evaluation and validation. This paper specifically focuses on the quantitative analysis of cables and proposes a theoretical model to predict cable noise. In this model, the reaction characteristics between irradiated neutrons and cables were discussed thoroughly. Based on the Monte Carlo method, a comprehensive simulation approach of neutron sensitivity was introduced and long-term irradiation experiments in a heavy water reactor (HWR) were designed to verify this model. The theoretical results of this method agree quite well with the experimental measurements, proving that the model is reliable and exhibits excellent accuracy. The experimental data also show that the cable current accounts for approximately 0.2% of the total current at the initial moment, but as the detector gradually depletes, it will contribute more than 2%, making it a non-negligible proportion of the total signal current.

Strength reduction factor spectra based on adaptive damping of SDOF systems

  • Feng Wang;Kexin Yao;Wanzhe Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.219-234
    • /
    • 2024
  • The strength reduction factor spectrum is traditionally obtained from a single-degree-of-freedom (SDOF) system with a constant damping coefficient. However, according to the principle of Rayleigh damping, the damping coefficient matrix of a system changes with the stiffness matrix, and the damping coefficient of an equivalent SDOF system changes with the tangent stiffness coefficient. In view of that, this study proposes an equivalent SDOF system with an adaptive damping coefficient and derives a standardized reaction balance equation. By iteratively adjusting the strength reduction factor, the corresponding spectrum with an equivalent ductility factor is obtained. In addition, the ratio between the strength reduction factor that considers adaptive damping and the traditional strength reduction factor, denoted by η, is determined, and the η-μ-T relationship is obtained. Seismic records of Classes C, D, and E sites are selected as excitations. Moreover, a nonlinear response time-history analysis is performed to establish the relationship between the η and T values for the equivalent ductility factor μ. Further, by exploring the effects of the site class, ductility factor, second-order stiffness coefficient, and period T on the mean value of η, a simplified calculation equation of mean η is derived, and η is used as a modified value for the traditional strength reduction factor R spectrum.

Method for simultaneous analysis of bisphenols and phthalates in corn oil via liquid chromatography-tandem mass spectrometry

  • Min-Chul Shin;Hee-Jin Jeong;Seoung-Min Lee;Jong-Su Seo;Jong-Hwan Kim
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.271-279
    • /
    • 2024
  • Bisphenols and phthalates are endocrine-disrupting chemicals that are commonly used in packaging and as plasticizers. However, they pose health risks through ingestion, inhalation, and dermal contact. Accurate analysis of these pollutants is challenging owing to their low concentration and their presence in complex oil matrices. Therefore, they require efficient extraction and detection methods. In this study, an analytical method for the simultaneous quantification of bisphenols and phthalates in corn oil is developed. The dynamic multiple reaction monitoring mode of liquid chromatography-tandem mass spectrometry is used according to the different polarities of bisphenols and phthalates. The method is validated by assessing system suitability, linearity, accuracy, precision, homogeneity, and stability. The determination coefficients are higher than 0.99, which is acceptable. The percentage recovery and coefficient of variation of the accuracy and precision confirm that this analytical method is capable of simultaneously quantifying bisphenols and phthalates in corn oil. The bisphenols and phthalates in the formulations and pretreatment samples are stable for 7 d at room temperature and 24 h in an auto-sampler. Therefore, this validated analytical method is effective for the simultaneous quantification of bisphenols and phthalates in oils.

Synthesis of P3HT-b-P4VP via Anionic Polymerization and its Physical Properties in Various Solvents (음이온 중합법 기반 P3HT-b-P4VP 블록공중합체 정밀 합성 및 이의 용매에 따른 물리적 특성 변화 연구)

  • Hwang, Sung Yeon;Park, Jeyoung;Oh, Dongyeop X.
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.336-341
    • /
    • 2018
  • In general, the synthesis of poly(3-hexylthiophene)(P3HT)-based block copolymers requires at least a 4-5 step process. To control the molecular weight, molecular weight distribution, and block ratio, the reaction conversion and time should be monitored. In addition, the reaction scale usually limited to several mg to g was difficult to increase due to the limitations of living radical polymerizations. In this study, we synthesized P3HT-b-poly(4-vinylprydine) (P3HT-b-P4VP) with a final product quantity of > 19 g via a 2-step synthetic method with an anionic polymerization. In this method, the molecular weight and molecular weight distribution of P3HT-b-P4VP can be well controlled without monitoring the reaction conversion. We also studied physical properties of P3HT-b-P4VP depending on different solvent systems, which were investigated by UV-vis spectroscopy, atomic force microscopy, and ultraviolet photoelectron spectroscopy.