• Title/Summary/Keyword: Reaction monitoring

Search Result 585, Processing Time 0.026 seconds

MALDI-MS-Based Quantitative Analysis of Bioactive Forms of Vitamin D in Biological Samples

  • Ahn, Da-Hee;Kim, Hee-jin;Kim, Seong-Min;Jo, Sung-Hyun;Jeong, Jae-Hyun;Kim, Yun-Gon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.106-112
    • /
    • 2020
  • Analyzing vitamin D levels is important for monitoring health conditions because vitamin D deficiency is associated with various diseases such as rickets, osteomalacia, cardiovascular disorders and some cancers. However, vitamin D concentration in the blood is very low with optimal level of 75 nmol/L, making quantitative analysis difficult. The objective of this study was to develop a highly sensitive analysis method for vitamin D using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). 25-hydroxyvitamin D (25(OH)D), which has been used as an indicator of vitamin D metabolites in human biofluids was chemically derivatized using a secosteroid signal enhancing tag (SecoSET) with powerful dienophile and permanent positive charge. The SecoSET-derivatized 25(OH)D provided good linearity (R2 > 0.99) and sensitivity (limit of quantitation: 11.3 fmol). Chemical derivatization of deuterated 25-hydroxyvitamin D3 (d6-25(OH)D3) with SecoSET enabled absolute quantitative analysis using MALDI-MS. The highly sensitive method could be successfully applied into monitoring of quantitative changes of bioactive vitamin D metabolites after treatment with ketoconazole to inhibit 1α-hydroxylase reaction related to vitamin D metabolism in human breast cancer cells. Taken together, we developed a MALDI-MS-based platform that could quantitatively analyze vitamin D metabolites from cell products, blood and other biofluids. This platform may be applied to monitor various diseases associated with vitamin D deficiency such as rickets, osteomalacia and breast cancer.

A Study on Schoolchildren's Mercury Exposure and Related Health Effects in High Mercury Exposure Areas in Korea (수은 고노출 지역 초등학생의 수은노출관련 건강영향 연구)

  • Kim, Dae Seon;Ahn, Seung Chul;Chung, Hee-Ung;Kwon, Young Min;CHOI, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-276
    • /
    • 2015
  • Objectives: According to the 2007 Korea National Environmental Health Survey (KNEHS), some areas in the Gyeongsang Provinces showed very high blood mercury levels in adults. We conducted this project to investigate any related health effects in children due to mercury levels in these areas. Methods: In total, 1,097 students between grades 3 and 6 at 19 elementary schools were recruited from four areas with high mercury exposure as identified by the KNEHS. Total mercury levels in biological samples were compared with health check-ups performed on the schoolchildren. Biological monitoring, supported by questionnaires, a computerized neurobehavioral test, a posturography test and a personality test, were applied. Results: Triglycerides showed a significant relation with mercury in blood, urine and hair. Total mercury concentrations were divided into two groups: upper and lower concentration groups based on the median value. In the computerized neurobehavioral test, the upper blood mercury group showed a greater reaction time for color-word vigilance (p<0.05). In the posturography test, the intensity value of the tremor test showd high significant relations with mercury levels (p<0.01). In the personality test, self-consciousness, misdeeds and family relationships showed significant differences between the upper and lower urine mercury groups (p<0.01), and specific reactions, ego resilience and hyperactivity also showed some differences (p<0.1). Conclusion: Some items in the neurobehavioral test, posturography test and personality test showed significant relations with biological mercury levels. Therefore, monitoring and appropriate management of students showing high mercury levels are recommended in order to reduce their mercury exposure.

Nail DNA and Possible Biomarkers: A Pilot Study

  • Park, Joshua;Liang, Debbie;Kim, Jung-Woo;Luo, Yongjun;Huang, Taesheng;Kim, Soo-Young;Chang, Seong-Sil
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.4
    • /
    • pp.235-243
    • /
    • 2012
  • Objectives: Nail has been a substitute DNA source for genotyping. To investigate the integrity and consistency of nail DNA amplification for biomarker study, nail clippings from 12 subjects were collected at monthly intervals. The possibility of longer amplification and existence of GAPDH RNA/protein, were also investigated with three nail samples. Methods: Three primer sets were designed for quantitative amplification of nuclear and mitochondrial genes and analysis of their consistency. The mean threshold cycles in amplification of the target genes were compared to test the consistency of polymerase chain reaction (PCR) performance among individual factors including age groups, sex, family, the nail source, and by the size of the amplification segments. Results: The amplification of the target genes from nail DNA showed similar integrity and consistency between the nail sources, and among the serial collections. However, nail DNA from those in their forties showed earlier threshold cycles in amplification than those in their teens or seventies. Mitochondrial DNA (mtDNA) showed better DNA integrity and consistency in amplification of all three targets than did nuclear DNA (nucDNA). Over 9 kb of mtDNA was successfully amplified, and nested quantitative PCR showed reliable copy numbers (%) between the two loci. Reverse transcription PCR for mRNA and immunoblotting for GAPDH protein successfully reflected their corresponding amounts. Regarding the existence of RNA and protein in nails, more effective extraction and detection methods need to be set up to validate the feasibility in biomarker study. Conclusions: Nail DNA might be a feasible intra-individual monitoring biomarker. Considering integrity and consistency in target amplification, mtDNA would be a better target for biomarker research than nucDNA.

Monitoring of Microorganisms in Commercial Liquid Pig Manures in Korea (국내 유통 돈분 액비의 미생물 함량 모니터링)

  • Lim, Seong-Mook;Lee, Ji-Ho;Go, Woo-Ri;Kunhikrishnan, Anitha;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1181-1184
    • /
    • 2011
  • Total aerobic bacteria, Esherichia coli O157:H7, and Salmonella spp. were examined in commercial liquid pig manures. Commercial liquid pig manures (n=33) were collected from muck joint resource recovery plant at April, June, August, October 2009, Korea. Total aerobic bacteria were incubated at $37^{\circ}C$ for 24-48 hrs, and quantified as a colony-forming unit (CFU) $mL^{-1}$. Analysis of Esherichia coli O157:H7 and Salmonella spp. were followed by Korean Food Standards Codex method. Colony of Salmonella spp. was confirmed by API kit and real time polymerase chain reaction (PCR). Total aerobic bacteria isolated from fermented commercial liquid pig manures ranged from 2.8 to $24.3{\times}10^4\;CFU\;mL^{-1}$. Esherichia coli O157:H7 was not detected, and Salmonella spp. showed the low detection frequency at only 1 sample. This study suggests that continuous monitoring in commercial liquid pig manures is required to improve the agricultural food through management of agricultural land contaminated with liquid pig manures.

Analysis of cyanide free electroless Au plating solution by capillary elecrophoresis (캐피라리 전기 영동법에 의한 비시안 무전해 Au 도금액의 분석)

  • Han, Jaeho;Kim, DongHyun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.120-132
    • /
    • 2022
  • In the non-cyanide-based electroless Au plating solution using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent, analysis of each component constituting the plating solution is essential for the analysis of the reaction mechanism. And component analysis in the plating solution is important for monitoring component changes in the plating process and optimizing the management method. Capillary Electrophoresis (CE) method is rapid, sensitive and quantitative and could be readily applied to analysis of Aun+ ion, complexing agent and reducing agent in electroless Au plating solution. In this study, the capillary electrophoresis method was used to analyze each component in the electroless Au plating solution in order to elucidate the complex bonding form and the plating mechanism of the non-cyanide-based electroless Au plating bath. The purpose of this study was to establish data for optimizing the monitoring and management method of plating solution components to improve the uniformity of precipitation and stability. As a result, it was confirmed that the analysis of thiomalic acid as a complexing agent and Aun+ ions and the analysis of aminoethanethiol as a reducing agent were possible by capillary electrophoresis. In the newly developed non-cyanide-based electroless Au plating solution, it was confirmed that Aun+ ions exist in the form of Au+ having a charge of +1, and that thiomalic acid and Au+ are combined in a molar ratio of 2 : 1. In addition, it was confirmed that aminoethanethiol can form a complex by combining with Au+ ions depending on conditions as well as acting as a reducing agent.

α-Pinene Sensing Properties of Rhombohedral In2O3 Nanoparticles Prepared using the Microwave-assisted Hydrothermal Method (마이크로파 보조 수열 합성법으로 제조한 Rhombohedral In2O3 나노입자의 α-pinene 감지 특성)

  • Byeong-Hun, Yu;Hyo Jung, Lee;Joo Ho, Hwang;Ji-Wook, Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.418-422
    • /
    • 2022
  • α-pinene is a natural volatile organic compound secreted by coniferous trees to protect themselves from attacks by insects, microorganisms, and viruses. Recently, studies have reported that α-pinene possesses pharmacological effects on various biological reactions such as anxiolytic, sleep-enhancing, anti-nociceptive, and inflammatory activity. Thus, forest bathing has recently received great attention as a novel therapy for treating severe diseases as well as psychological issues. However, appropriate places and timings for effective therapies are still veiled, because on-site monitoring of α-pinene gas in forests is barely possible. Although portable chemosensors could allow real-time analysis of α-pinene gas in forests, the α-pinene sensing properties of chemosensors have never been reported thus far. Herein, we report for the first time, the α-pinene sensing properties of an oxide semiconductor gas sensor based on rhombohedral In2O3 (h-In2O3) nanoparticles prepared by a microwave-assisted hydrothermal reaction. The h-In2O3 nanoparticle sensor showed a high response to α-pinene gas at ppm levels, even under humid conditions (for example, relative humidity of 50 %). The purpose of this research is to identify the potential of oxide semiconductor gas sensors for implementing portable devices that can detect α-pinene gas in forests in real-time.

Evaluation of Proposed Diagnostic System for Detection of Pan-enterovirus Using Reverse Transcription Nested PCR from Water Environment

  • Siwon Lee;Kyung Seon Bae;Jin-Ho Kim;Ji-Hyun Park;Ji Hye Kim;Ji-Yeon Park;Kyung-Jin Lee;Chae-Rin Jeon;Jeong-Ki Yoon;Soo-Hyung Lee;Eung-Roh Park
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.81-87
    • /
    • 2023
  • Pan-Enterovirus (Pan-EV) infects millions of children and infants worldwide every year. As severe infections have recently been reported, the need for monitoring has consequently intensified. Pan-EV is a categorical name for waterborne enteroviruses belonging to the Picornaviridae family, and includes a wide range of pathogens including Coxsackievirus (CoxV), Echovirus (EcoV) and Enterovirus (EV). In this study, we proposed an optimal RT-nested PCR method for diagnosis of various types of Pan-EV in an aquatic environment and developed a positive control. Considering detection sensitivity, specific reaction, and final identification, one condition capable of amplifying 478 bp among the four candidates in the 1st round PCR (RT-PCR) and one condition in the 2nd round PCR (nested PCR) were selected. Through the detection of nucleic acids extracted from 123 groundwater samples and the detection sensitivity test based on artificial spiking in the sample, the methods are optimal for non-disinfected water samples such as groundwater. We developed a positive control for Pan-EV detection that can be amplified to different sizes under the two conditions. Accuracy could be further improved by testing for contamination from the control group. The method proposed in this study and the positive control developed are expected to be used in monitoring Pan-EV in aquatic environments including groundwater through future research using more samples.

Status of Herbal-drug-associated Adverse Drug Reactions Voluntarily Reported by EMR (1개 대학 한방병원에서 EMR을 통해 보고된 한약에 의한 약물유해반응의 현황)

  • Kwon, Yeong-Ju;Cho, Woo-Keun;Han, Chang-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.485-497
    • /
    • 2012
  • Objectives : The aim of this study was to systematically investigate herbal-drug-associated adverse drug reactions (herbal ADRs) reports submitted by a single oriental hospital and to analyze the general characteristics, causative agents, clinical manifestations, severity and types of herbal medicines which caused herbal ADRs. Methods : This study proceeded with IRB approval. The data on herbal ADR were collected prospectively from January 2008 to February 2012 by EMR of Dongguk University Ilsan Oriental Hospital. The World Health Organization (WHO)-Uppsala Monitoring Center (UMC) criteria was used to determinate causality for each herbal ADR. WHO-Adverse Reaction Terminology (WHO-ART) System Organ Class (SOC) code and WHO severity category were also used in this study. Results : A total of twenty eight cases were reported. Twenty two cases were assessed to have over possible relations with herbal medication. The gender ratio of these cases were 64.6 percent female and 36.4 percent male, demonstrating no statistical significance. Patients aged over 60 were 59.1%. Gastro-intestinal system was reported to be the most frequently affected organ (38.8%), and followed by psychiatric system (22.4%), and integumentary system (22.4%). The most common clinical symptom was headache (12.2%), followed by diarrhea (10.2%), and pruritus (10.2%). The severity of most cases was assessed to be mild (89.8%). The percentage of moderate ones was 10.2%, and there were no severe cases. Conclusions : Progressive study and further analysis on herbal ADRs are warranted for safety in the clinical use of herbal medicines.

Loop-mediated isothermal amplification assay for the rapid detection of swine influenza virus (등온증폭법을 이용한 돼지인플루엔자바이러스 신속 진단법 개발)

  • Kim, Eun-Mi;Jeon, Hyo-Sung;Kim, Ji Jung;Kim, Hee-Jung;Shin, Yeun-Kyung;Song, Jae-Young;Yeo, Sang-Geon;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.2
    • /
    • pp.107-116
    • /
    • 2015
  • In this study, we developed a rapid, sensitive and specific reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) assay for detection of swine influenza viruse (SIV) including major subtypes of swine influenza viruses H1N1, H1N2 and H3N2, and a novel subtype of influenza A virus that accidentally infected in pig population. The RT-LAMP was completed in 40 min at $58^{\circ}C$ and the sensitivity of the RT-LAMP ($1copy/{\mu}L$) was 10-fold higher than conventional reverse transcription-polymerase chain reaction (RT-PCR) ($10copy/{\mu}L$) and the same to real time RT-PCR ($1copy/{\mu}L$). Also, the result of the RT-LAMP can be confirmed without any detection system. Therefore, the RT-LAMP could be a alternative diagnostic method for SIV detection in national SIV monitoring system and clinical diagnostic laboratory in the future.

A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete

  • Zou, Xiaotian;Chao, Alice;Wu, Nan;Tian, Ye;Yu, Tzu-Yang;Wang, Xingwei
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Concrete is known as a heterogeneous product which is composed of complex chemical composition and reaction. The development of concrete thermal effect during early age is critical on its future structural health and long term durability. When cement is mixed with water, the exothermic chemical reaction generates hydration heat, which raises the temperature within the concrete. Consequently, cracking may occur if the concrete temperature rises too high or if there is a large temperature difference between the interior and the exterior of concrete structures during early age hydration. This paper describes the contribution of novel Fabry-Perot (FP) fiber optic temperature sensors to investigate the thermal effects of concrete hydration process. Concrete specimens were manufactured under various water-to-cement (w/c) ratios from 0.40 to 0.60. During the first 24 hours of concreting, two FP fiber optic temperature sensors were inserted into concrete specimens with the protection of copper tubing to monitor the surface and core temperature change. The experimental results revealed effects of w/c ratios on surface and core temperature developments during early age hydration, as well as demonstrating that FP fiber optic sensors are capable of capturing temperature variation in the concrete with reliable performance. Temperature profiles are used for calculating the apparent activation energy ($E_a$) and the heat of hydration (H(t)) of concrete, which can help us to better understand cement hydration.