• 제목/요약/키워드: Reaction metal

Search Result 2,156, Processing Time 0.029 seconds

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents (세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구)

  • Park, Ha Ju;Han, Se Jong;Yim, Joung Han;Kim, Dockyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

Synthesis and Lubricating Properties of Succinic Acid Alkyl Ester Derivatives (숙신산 알킬 에스테르 유도체의 합성 및 윤활특성)

  • Baek, Seung-Yeob;Kim, Young-Wun;Chung, Keun-Wo;Yoo, Seung-Hyun;Park, Su-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.196-202
    • /
    • 2011
  • In this paper, a series of alkyl succinic acid esters for base oil were synthesized by condensation reaction of succinic anhydride and fatty alcohol. The structures of the synthesized esters were confirmed by $^1H-NMR$, FT-IR spectrum and GC analysis. Basic properties of esters such as kinematic viscosity (KV), refractive index (RI), total acid number (TAN) and pour points were measured and lubricating properties such as SRV wear scar diameter (SRV WSD), fraction coefficient (COF) and 4-ball wear (4-ball WSD) were also evaluated. As the results of basic properties, KV, RI and pour point of synthetic esters increased as the carbon chain of the esters increased. Measurement value of total acid number (TAN) was indicated between 0.2~4 mgKOH/g, and that metal working fluids and pressure working oils are acceptable to use as base oil. Also, lubricating properties of the esters showed as follows: 0.391~0.689 mm of SRV WSD, 0.110~0.138 of SRV COF and 0.49~0.55 mm of 4-ball WSD depended on the structure of the esters. In a comparison on the lubrication capacity of the SRV test based on polyester TMPTO, SRV WSD result showed that a better performance caused by the alkyl group. On the other hand, SRV COF test was not influenced of the alkyl group which the capacity of the lubricant was sightly diminished than the comparison material, regardless of the alkyl group.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.