• 제목/요약/키워드: Reaction gas ratio

검색결과 557건 처리시간 0.025초

산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과 (The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame)

  • 이창엽;백승욱
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

배기가스가 혼합된 고온 공기류에서의 CO 소멸특성에 대한 수치해석 연구 (Numerical Study of CO Reduction Characteristics in High-temperature Air Stream Diluted with Exhaust Gas)

  • 박지웅;오창보
    • 한국연소학회지
    • /
    • 제20권3호
    • /
    • pp.8-12
    • /
    • 2015
  • The CO reduction characteristics of hot air stream diluted with exhaust gas in a perfectly stirred reactor (PSR) were investigated numerically. The dilution ratio ($\Omega$), inlet temperature ($T_{in}$), and residence time ($\tau$) were considered as parameters to investigate the effects of those on the emission indices for CO and $CO_2$ (EICO and $EICO_2$). The roles of dominant reactions and the production rates of major species were analyzed. It was found from the EICO trend that the supplied CO in the air stream was consumed. The EICO increased negatively with $T_{in}$ at fixed $\tau$ regardless of $\Omega$. However, the magnitude of EICO and minimum inlet temperature for CO reduction showed complicated trend according to the variation of $\tau$. It was identified that the OH radical, generated from the reactions, $O_2+H{\leftrightarrow}O+OH$ and $2OH{\leftrightarrow}H+H_2O$, affected the CO reduction by the reaction, $CO+OH{\leftrightarrow}H+CO_2$. However, the CO emission ratio increased at sufficiently high inlet temperature range due to the thermal dissociation of $CO_2$.

자장 강화 반응성 이온 식각 장비를 이용한 몰리브덴 박막의 식각 특성 연구 (A Study on Etching Characteristics of Molybdenum Thin Films by Magnetically Enhanced Reactive lon Etching System)

  • 김남훈;권광호;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제13권1호
    • /
    • pp.6-12
    • /
    • 2000
  • In this study, molybdenum thin films were etched with Cl\ulcorner/(Cl\ulcorner+SF\ulcorner) gas mixing ratio in an magneti-cally enhanced reactive ion etching(MERIE) by the etching parameters such as rf power of 250 watts, chamber pressure of 100 mTorr and B-field of 30 gauss. The etch rate was 150nm/min under Cl\ulcorner/(Cl\ulcorner+SF\ulcorner) gas mixing ratio of 0.25. At this time, the selectivity of Mo to SiO\ulcorner, photoresist were respectively 0.94, 0.05. The surface reaction of the etched Mo thin films was investigated with X-ray photoelectron spectroscopy(XPS). It was analyzed that Mo peaks was mainly observed in Mo-O bonds formed MoO\ulcorner compounds and F was detected in Mo-F and O-F bonds. Cl peaks were detected by the peak of Cl 2p\ulcorner in Cl-Mo bonds of MoCl\ulcorner or MoO\ulcornerCl\ulcorner formulas. Almost all of both Cl and S atoms had been com-bined with Mo, respectively.

  • PDF

25 kW급 MCFC 배가스 촉매연소기의 실험적 연소특성 (An Experimental Study on the Reaction Characteristics of Anode offgas Catalytic Combustor for 25kW MCFC Systems)

  • 이상민;우현탁;안국영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • Anode off-gas of high temperature fuel cells such as MCFC contains a significant amount of combustible components like hydrogen, carbon monoxide and methane according to fuel utilization ratio of the fuel cell stack. Thus, it is important to fully burn anode off-gas and utilize the generated heat in order to increase system efficiency and reduce emissions as well. In the present study, 25 kW catalytic combustor has been developed for the application to a load-following 300kW MCFC system. Mixing and combustion characteristics have been experimentally investigated with the catalytic combustor. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple catalysts having different structures and compositions. Results show that the exhaust emissions are highly dependent on the catalyst loading and the ratio of catalytic components. Test results at load-following conditions are also shown in the present study.

  • PDF

디젤엔진의 후처리장치로서 PCD 플라즈마 시스템에 관한 연구 (A Study on the PCD Plasma System as an After Treatment Apparatus in Diesel Engine)

  • 유경현
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.70-77
    • /
    • 2012
  • The selective catalytic reduction(SCR) system used to reduce NOx in diesel engines requires an NO/$NO_2$ ratio of about 1 in exhaust emissions to realize the fast SCR mode at temperatures lower than $300^{\circ}C$. This study investigated the characteristics of a plasma system as a pre-active apparatus for the fast SCR reaction mode of an SCR system. Plasma was generated by the pulse corona discharge(PCD) method with a four-channel wire-cylinder reactor. This study showed that plasma was easily generated in the exhaust gas by the PCD system, and the peak voltage of the normal state condition for plasma generation was generally 12 kV. The PCD system easily converted NO into $NO_2$ at lower temperatures and the NO/$NO_2$ conversion ratio increased with the discharge current for plasma generation. But the PCD system could not convert NO into $NO_2$ at higher engine speeds and higher engine loads due to the lack of oxygen in exhaust gas. The PCD system also activated the diesel oxidation catalysts(DOC) system to reduce CO emissions.

The D/H Ratio of Water Ice at Low Temperatures

  • 이정은
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • We present the modeling results of deuterium fractionation of water ice, $H_2$, and the primary deuterium isotopologues of $H3^+$ in the physical conditions associated with the star and planet formation process. We calculated the deuterium chemistry for a range of gas temperatures (Tgas~10-30 K) and ortho/para ratio (opr ) of $H_2$ based on state-to-state reaction rates and explore the resulting fractionation including the formation of a water ice mantle coating grain surfaces. We find that the deuterium fractionation exhibits the expected temperature dependence of large enrichments at low gas temperature, but only for opr-H2<0.01. More significantly the inclusion of water ice formation leads to large D/H ratios in water ice (${\geq}10^{-2}$ at 10 K) but also alters the overall deuterium chemistry. For T<20 K the implantation of deuterium into ices lowers the overall abundance of HD which reduces the efficiency of deuterium fractionation at high density. Under these conditions HD will not be the primary deuterium reservoir in the cold dense interstellar medium and $H3^+$ will be the main charge carrier in the dense centers of pre-stellar cores and the protoplanetary disk midplane.

  • PDF

고밀도 플라즈마에 의한 $Y_{2}O_{3}$박막의 식각 메커니즘 연구 (Etch Mechanism of $Y_{2}O_{3}$ Thin Films in High Density Plasma)

  • 김영찬;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2000
  • In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma (ICP). The etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity Of $Y_2$O$_3$ to YMnO$_3$ were 302/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 repectively. In x-ray photoelectron spectroscopy (XPS) analysis, $Y_2$O$_3$ thin film was dominantly etched by Ar ion bombardment, and was assisted by chemical reaction of Cl radical. These results were confirmed by secondary ion mass spectroscopy(SIMS) analysis. YCI, and YCl$_3$ existed at 126.03 a.m.u, and 192.3 a.m.u, respectively

  • PDF

메탄올 수증기 개질반응에서의 상용촉매 비교연구 (A Comparative Study of Commercial Catalysts for Methanol Steam Reforming)

  • 박정은;박재현;임성대;김창수;박은덕
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.21-27
    • /
    • 2011
  • 메탄올 수증기 개질반응에 대한 적용가능성을 파악하기 위하여 메탄올 합성용 촉매인 ICI-M45와 수성가스 전환반응용 촉매인 MDC-3와 MDC-7을 비교 연구하였다. 또한 수성가스전환 반응에 대한 세 촉매의 비교실험도 수행하였다. 그 결과 MDC-7이 메탄올 수증기 개질반응에서 가장 높은 전화율을 보였으며, $H_2$$CO_2$ 생성속도 또한 높게 나타났다. 수성가스 전환반응용 촉매인 MDC-7과 메탄올 합성촉매인 ICI-M45를 이용하여 촉매 충진 방법에 따른 메탄올의 전화율에서의 변화를 살펴본 결과, MDC-7 단독보다 낮은 메탄올의 전화율을 보였다. 수성가스 전환반응에서도 DC- 7, MDC-3, 그리고 ICI-M45의 순으로 반응성이 감소하였다. 상기 두 반응에서 MDC-7이 가장 우수한 이유로는 높은 비표면적과 Cu의 분산도, 그리고 적절한 Cu와 Zn의 비율에 기인함을 확인할 수 있었다.

가스화기에서 WGS 반응을 통한 합성가스의 수소 전환 (Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier)

  • 이시훈;김정남;엄원현;백일현
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

고속가스플래임 용사법을 이용한 광촉매 $TiO_2$-생분해성 플라스틱 복합재료의 개발 (The Development of Functional Photocatalytic $TiO_2$-Biodegrdable Plastic Composite Material by HVOF Spraying)

  • 방희선;방한서
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.57-61
    • /
    • 2006
  • For the production of functional $TiO_2$-biodegradable plastic (polybutylene succinate:PBS) composite material with photocayalytic activity, we attempted to prepare $TiO_2$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated by the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photocatalytic performance of the coatings have been investigated. The results indicated that for both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio of 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_7$ coating exhibited a largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to much higher susceptibility of heat for 7 nm agglomerated powder. HVOF sprayed $P_{200}$ and $P_{30}$ coatings show better performance as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_7$ coatings did not show the photocatalytic activity, which may result from the extremely small reaction surface area to the photocatalytic activity and low anatase ratio.