• Title/Summary/Keyword: Reaction Modulus

Search Result 239, Processing Time 0.024 seconds

Behavior of Retrogradation Retardation in Rice Starch Paste by Raw Wheat Flour Addition (생밀가루 첨가에 따른 쌀전분 페이스트의 노화지연 연구)

  • Bae, In Young;Lee, Jun Woo;Kim, Hong Sul;Kim, Kyung Mi;Han, Gwi Jung;Kim, Myung Hwan;Jun, Soo Jin;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.797-800
    • /
    • 2015
  • The effect of raw wheat flour on starch retrogradation retardation was investigated in a rice starch paste model. Specifically, in terms of amylase activity present in the wheat flour, the retardation effect was investigated depending on reaction temperature (40, 60, and $80^{\circ}C$), incubation time (0, 20, 40, and 60 min), and wheat flour addition levels (0-10%). An increase in wheat flour concentration resulted in a rapid decrease in the elastic modulus (G') as the incubation time increased. The G' changes of the rice starch pastes were furthermore fitted by the first order reaction for the reaction rate estimation on the temperature basis. The experimental reaction rate of the paste sample incubated with 10% wheat flour at $40^{\circ}C$ exhibited good agreement with the predicted value. This result implied that the first order reaction kinetics could be suitable to predict the changes in the G' as a function of incubation temperature and wheat flour concentration.

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3 (Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.

Mechanical Properties of AlN/hBN Ceramic Composites (AlN/hBN 복합재료의 기계적 성질)

  • Lee, Jaehyung;Ahn, Hyun-Wook;Yoon, Young-Sik;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.582-587
    • /
    • 2005
  • AlN-BN ceramic composites were fabricated and their mechanical properties were investigated. The relative density of hot-pressed composites decreased with increasing BN content, but over $99\%$ could be obtained with 30 $vol\%$ BN in AlN. YAG was formed in the composites and monolithic AlN as a second phase by the reaction between $Y_2O_3$, added as sintering aid, and $Al_2O_3$. As expected, Vickers hardness and Young's modulus decreased with increasing BN content. The three-point flexural strength also showed similar behavior decreasing from 500 MPa of monolith down to 250 MPa by the addition 30 $vol\%$ BN. However, interestingly, the standard deviation of the strength values decreased significantly as BN was added to AlN. As a result, the Weibull modulus of the AlN-30 $vol\% BN composite was 21.3, which was extremely high. Fractography and crack path studies revealed that BN platelets induced grain pull-out and crack bridging in a bigger scale during crack propagation. Consequently, fracture toughness increased as more BN was added, reaching 4.5 $MPa\sqrt{m}$ at 40 $vol\%$ BN.

Property Changes due to Numbers of Nitrogen Atom Bonded at Ethyl Group, Included in Main Chain of Curing Agents of DGEBGF/Linear Amino Systems (DGEBF/선형아민 계에서의 경화제 주쇄에 포함된 에틸기에 결합된 질소원자 개수에 따른 물성변화 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2004
  • To determine the effect of numbers of nitrogen atom bonded at ethyl group included in main chain of linear amine curing agents of epoxy-cure systems on the thermal and mechanical properties, standard epoxy resin DGEBF was cured with DETA, TETA and TEPA in a stoichiometrically equivalent ratio. From this work, the effect of curing agents of the DGEBF/amine systems oil the thermal and mechanical properties was significantly influenced by numbers of nitrogen atom of curing agents. The results showed that heat of reaction increased, and maximum exothermic temperature decreased with the decrease of numbers of nitrogen atom. In case of cured systems, density and maximum conversion(%) had no relation to numbers of nitrogen atom, but flexural modulus and tensile modulus increased with the decrease of numbers of nitrogen atom in main chain. Thermal stability, shrinkage(%), Tg, tensile and flexural strength showed irregular tendency having nothing to do with numbers of nitrogem atom at a sight. This findings imply that the differences in the maximum conversion(%) about the chain length of curing agents affect the thermal and mechanical properties.

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Preparation of the Blends of Poly(amic acid) and PBO Precursor and Their Properties (Poly(amic acid)와 PBO 전구체의 블렌드 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.77-84
    • /
    • 2008
  • The thermal properties, morphology, mechanical properties and gas permeability of the blends of poly (amic acid) (PAA) and poly (o-hydroxyamides) (PHAs) having pendant group was investigated. The 5% weight loss and major weight loss of the b)ends occurred in the ranges of $348{\sim}407^{\circ}C$ and $589{\sim}615^{\circ}C$ upon a heating process. After a thermical annealing, the tensile strength and initial modulus of blends increased $3.7{\sim}52.9%$ and $34.4{\sim}70%$ from the value of pure PAA, respectively. Especially the tensile strength and modulus of the PAA/MP-PHA=9/1 showed the highest values (97.5 MPa and 2.67 GPa, respectively), which were 53 and 70% higher than those of pure PAA. The fine PHA domains were found to be uniformly dispersed. The interfacial adhesion between PAA and PHA was identified to be good. The gas permeabilities of PAA/M-PHA blend increased with M-PHA contents.

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.

Preparation of Silica-Filled SBR Compounds with Low Rolling Resistance by Wet Masterbatch

  • Yang, Jae-Kyoung;Park, Wonhyeong;Ryu, Changseok;Kim, Sun Jung;Kim, Doil;Seo, Gon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • The physical properties of silica-filled SBR compounds (WSBR) prepared using silica-SBR wet masterbatches (WMB) were systematically investigated to understand the effect of the surface treatment of silica on the reinforcement performance of SBR. Treatment of silica with bis(triethoxysilylpropyl)tetrasulfide (TESPT) in the liquid phase, followed by mixing with an SBR solution and recovery by water stripping, easily produced silica-SBR WMB. However, insufficient surface treatment in terms of the amount and stability of the incorporated TESPT led to considerable silica loss and inevitable TESPT elution. Pretreatment of silica in the gas phase with TESPT and another organic material that enabled the formation of organic networks among the silica particles on the surface provided hydrophobated silica, which could be used to produce silica-SBR WMB, in high yields of above 99%. The amount and type of organic material incorporated into silica greatly influenced the cure characteristics, processability, and tensile and dynamic properties of the WSBR compounds. The TESPT and organic material stably incorporated into silica increased their viscosity, while the organic networks dispersed on the silica surface were highly beneficial for reducing their rolling resistance. Excessive dosing of TESTP induced low viscosity and a high modulus. The presence of connection bonds formed by the reaction of glycidyloxy groups with amine groups on the silica surface resulted in physical entanglement of the rubber chains with the bonds in the WSBR compounds, leading to low rolling resistance without sacrificing the mechanical properties. Mixing of the hydrophobated silica with a rubber solution in the liquid phase improved the silica dispersion of WSBR compounds, as confirmed by their low Payne effect, and preservation of the low modulus enhanced the degree of entanglement.

Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite (POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성)

  • Han, Jae Hee;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and $^1H$ NMR. The composites, PA-TPE/POSS-(TDI+CL), which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.