• 제목/요약/키워드: Reaction Heat

검색결과 1,878건 처리시간 0.023초

용융탄산염 연료 전지 스택의 성능 및 열전달 해석 (An Analysis on the Performance and the Heat Transfer of Molten Carbonate Fuel Cell Stack)

  • 구자용;서종철;김유
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.120-129
    • /
    • 1994
  • A numerical investigation has been carried out for the electrochemical reaction, mass and heat transfer characteristics of the Molten Carbonate Fuel Cell(MCFC) stack. The effects of cooling air channel and water gas shift reaction were taken into account. The current density distribution of electrodes, the molecular fractions of reactant gasses and three dimensional temperature distribution can be calculated and shown by several lines of equivalent values. The results have been compared with the existing ones, and reasonable agreement has been obtained. To examine the influence of changing parameters, such as the composition of reactant gases, the target average current density, the utilization of reactant gases, the cooling air inlet temperature and flow rates, the computer simulation has been done. The analysis method and computer program developed in this study will be greatly helpful to design and verify the optimum operating condition of MCFC stack.

  • PDF

CVD법으로 합성된 알루미나 박막 및 분말의 열처리에 따른 특성 (Properties of the Chemically Vapor Deposited Alumina Thin Film and Powder on Heat Treatment)

  • 최두진;정형진
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.235-241
    • /
    • 1989
  • A study on the APCVD(atmospheric pressure chemical vapor deposition) Al2O3 was done by using the aluminum-tri-isopropoxide/N2 reaction system at 40$0^{\circ}C$. When the flow rate of the carrier gas(N2) was over 2SLPM, heterogeneous reaction was observed. However, when the flow rate of the carrier gas was below 2SLPM, a porously deposited film or powder formation was observed. The film formed by a heterogeneous reaction was optically dense. The dense film is thought to be a kind of a hydrated alumina. After a thermal treatment of the film in the range of temperature from $600^{\circ}C$ to 1, 20$0^{\circ}C$, properties of the film seems to be changed due to dehydration and densification process. In the case of the powder on heat treatment(600~1, 20$0^{\circ}C$), both a phase transformation and the change of OH peak was observed.

  • PDF

500 MWe급 접선 연소 보일러 해석시 난류 혼합 속도 및 석탄 연소 모델의 영향 평가 (Assessment of the influence of coal combustion model and turbulent mixing rate in CFD of a 500 MWe tangential-firing boiler)

  • 양주향;강기섭;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.69-72
    • /
    • 2015
  • Computational fluid dynamics (CFD) modeling of large-scale coal-fired boilers requires a complicated set of flow, heat transfer and combustion process models based on different degrees of simplification. This study investigates the influence of coal devolatilization, char conversion and turbulent gas reaction models in CFD for a tangential-firing boiler at 500MWe capacity. Devolatilization model is found out not significant on the overall results, when the kinetic rates and the composition of volatiles were varied. In contrast, the turbulence mixing rate influenced significantly on the gas reaction rates, temperature, and heat transfer rate on the wall. The influence of char conversion by the unreacted core shrinking model (UCSM) and the 1st-order global rate model was not significant, but the unburned carbon concentration was predicted in details by the UCSM. Overall, the effects of the selected models were found similar with previous study for a wall-firing boiler.

  • PDF

10mm 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 연소 현상 관찰 (Investigation on Catalytic Combustion of Hydrogen-Air Premixed Gas in 10mm Scale Catalytic Combustor)

  • 최원영;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.181-186
    • /
    • 2004
  • Catalytic combustion is one of the suitable methods which is applicable to micro heat source due to high energy density and no flame quenching. And hydrogen can be oxidized at room temperature with platinum catalyst. So hydrogen-fueled micro catalytic combustor with platinum catalyst can be good and easy-handling heat source for another micro devices. In this work we focused on general catalytic combustion characteristics of hydrogen-air premixed gas in 10mm scale catalytic combustor for the further application to micro scale. Platinum was coated on dense ceramic monolith which can be installed in simple-structured catalytic combustor. We investigated the effect of flow rate, heat loss and platinum percentage in catalyst-coated monolith on catalytic combustion performance by temperature distribution in the combustor. By those results we confirmed catalytic reactivity and estimated reaction area. And we simulated micro scale catalytic reaction by sliced monolith. The results of this work will be important design factors for micro scale catalytic combustor.

  • PDF

수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구 (Heat and mass transfer characteristics in steam reforming reactor)

  • 이신구;임성광;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.340-343
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reform ins reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. In steam reforming reaction, heat transfer issue is so significant that geometrical configuration study is also conducted.

  • PDF

수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구 (Heat and mass transfer characteristics in steam reforming reactor)

  • 이신구;임성광;배중면
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF

수화된 규산소다의 팽창 특성 (Expansion Characteristics of the Hydrated Sodium Silicate)

  • 공양표;조호연;서동수
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.54-59
    • /
    • 2008
  • Hydrated sodium silicate with 25 wt% water contents was synthesized by hydrothermal reaction using anhydrous sodium silicate. The hydrated sodium silicate was expanded at $370^{\circ}C$ for 30 min. and then pulverized, classified (- 200 mesh) and press-formed. The samples were heat treated at $400{\sim}900^{\circ}C$ for 30 min. in order to study the expansion characteristics depending on heat treatment temperature. A porous body with closed pore was formed above $600^{\circ}C$. The volume expansion ratio and the pore size were increased and the specific gravity was decreased with increasing heat treatment temperature. However, the volume expansion ratio was decreased and the specific gravity was increased above $850^{\circ}C$ due to the softening of the sodium silicate.

수소생산을 위한 바이오매스 가스화 반응의 실험적 고찰 (Experimental Assessment of Biomass Gasification for Hydrogen Production)

  • 홍성구;엄병환
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.1-8
    • /
    • 2022
  • Hydrogen can be produced by gasification of biomass and other combustible fuels. Depending on oxydant agents, syngas or producer gas compositions become quite different. Since biomass has limited amount of hydrogen including moisture in it, the hydrogen concentration in the syngas is about 15% when air is supplied for oxidant agent. Experiments were conducted to investigate the channges in hydrogen concentrations in syngas with different oxidant agent conditions, fuel conditions, and external heat supply. Allothermal reaction resulted in higher concentrations of hydrogen with the supply of steam over air, reaching over 60%. Hydrogen is produced by water-gas and water-gas shift reactions. These reactions are endothermic and require enough heat. Autothermal reaction occurred in the downdraft gasifier used in the experiment did not provide enough heat in the reactions for hydrogen production. Steam seems a more desirable oxidant agent in producing the syngas with higher concentrations of hydrogen from biomass gasifications since nitrogen is included in syngas when air is used.

Heat stress and stallion fertility

  • Muhammad Shakeel;Minjung Yoon
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.683-697
    • /
    • 2023
  • The threat posed by increased surface temperatures worldwide has attracted the attention of researchers to the reaction of animals to heat stress. Spermatogenesis in animals such as stallions is a temperature-dependent process, ideally occurring at temperatures slightly below the core body temperature. Thus, proper thermoregulation is essential, especially because stallion spermatogenesis and the resulting spermatozoa are negatively affected by increased testicular temperature. Consequently, the failure of thermoregulation resulting in heat stress may diminish sperm quality and increase the likelihood of stallion infertility. In this review, we emphasize upon the impact of heat stress on spermatogenesis and the somatic and germ cells and describe the subsequent testicular alterations. In addition, we explore the functions and molecular responses of heat shock proteins, including HSP60, HSP70, HSP90, and HSP105, in heat-induced stress conditions. Finally, we discuss the use of various therapies to alleviate heat stress-induced reproductive harm by modulating distinct signaling pathways.

공기 및 수소 분위기에서 열처리 된 Pt/Al2O3 촉매의 HI분해반응 특성 (The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere)

  • 박은정;고윤기;박주식;김창희;강경수;조원철;정성욱;배기광;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.219-226
    • /
    • 2014
  • In HI decomposition, $Pt/Al_2O_3$ has been studied by several researchers. However, after HI decomposition, it could be seen that metal dispersion of $Pt/Al_2O_3$ was greatly decreased. This reason was expected of platinum loss and sintering, which platinum was aggregated. Also, this decrease of metal dispersion caused catalytic deactivation. This study was conducted to find the condition to minimize platinum sintering and loss. In particular, heat treatment atmosphere and temperature were examined to improve the activity of HI decomposition reaction. First of all, although $Pt/Al_2O_3$ treated in hydrogen atmosphere had low platinum dispersion between 13 and 18%, it was shown to suitable platinum form that played an important role in improving HI decomposition reaction. Oxygen in the air atmosphere made $Pt/Al_2O_3$ have high platinum dispersion even 61.52% at $500^{\circ}C$. Therefore, in order to get high platinum dispersion and suitable platinum form in HI decomposition reaction, air heat treatment at $500^{\circ}C$ was needed to add before hydrogen heat treatment. In case of 5A3H, it had 51.13% platinum dispersion and improved HI decomposition reaction activity. Also, after HI decomposition reaction it had considerable platinum dispersion of 23.89%.