• 제목/요약/키워드: Reacting Flow

검색결과 190건 처리시간 0.021초

난류 제트확산화염의 연소소음 특성에 관한 실험연구 (Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames)

  • 김호석;오상헌
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

반응혼합층의 복수 불안정성 모드 (Multiple Unstable Modes in the Reacting Mixing Layer)

  • 신동신
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.616-623
    • /
    • 1996
  • This paper investigates the linear stability of reacting mixing layers with special emphasis on the existence of multiple unstable modes. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. For the incompressible reacintg mixing layer with variable density. A necessary condition for instability has been derived. The condition requires that the angular momentum, not the vorticity, to have a maximum in the flow domain. New inflectional modes of instability are found to exist in the outer part of the mixing layer. For the compressible reacting mixing layer, supersonic unstable modes may exist in the abscence of a generalized inflection point. The outer modes at high Mach numbers in the reacting mixing layer are continuations of the inflectional modes of low Mach number flows. However, the generalized inflection point is less important at supersonic flows.

A MODIFIED SOLUTION PROCEDURE FOR THE ELLIPTIC-TYPE CONDITIONAL MOMENT CLOSURE MODEL IN NONPREMIXED TURBULENT REACTING FLOW

  • Liu, Tao;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.113-122
    • /
    • 1997
  • The conditional moment closure formulation considering the molecular and turbulent diffusion is derived. A simplified solution procedure is proposed to reduce the computational burden due to the increased dimensionality of the conditionally averaged variables. A conditionally averaged variable is expressed as a linear weighted average of the two extremes, 'no reaction' and 'equilibrium' states. The modified elliptic-type conditional moment closure formulation is implemented to simulate a two dimensional nonpremixed mixing layer reacting flow. Results show good agreement for the conditional averages of the species concentration in Bilger et al.

  • PDF

질소희석된 프로판 동축류 버너에서 부상화염에 대한 부력효과 (Buoyancy Effect on Stable and Oscillating Lifted Flames in Coflow Jets for Highly Diluted Propane)

  • 김준홍;신무경;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-16
    • /
    • 2001
  • When large size nozzle with low jet velocity is used, the buoyancy effect arises from the density difference among propane, air, and burnt gas. Flame characteristics in such buoyant jets have been investigated numerically to elucidate the effect of buoyancy on lifted flames. It has been demonstrated that the cold jet has circular cone shape since upwardly injected propane jet decelerates and forms stagnation region. In contrast to the cold flow, the reacting flow with a lifted flame has no stagnation region by the buoyancy force induced from the burnt gas. To further illustrate the buoyancy effect on lifted flames, the reacting flow with buoyancy is compared with non-buoyant reacting flow. Non-buoyant flame is stabilized at much lower height than the buoyant flame. At a certain range of fuel jet velocities and fuel dilutions. an oscillating flame is demonstrated numerically showing that the height of flame base and tip vary during one cycle of oscillation. Under the same condition. non-buoyant flame exhibits only steady lifted flames. This confirms the buoyancy effect on the mechanism of lifted flame oscillation.

  • PDF

지표면에 의한 음의 초과 감쇠 특성 연구 (A Study on the Characteristics of Excess Attenuation of the Sound due to the Ground)

  • 황철호;정성수
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.401-409
    • /
    • 1997
  • This study observed the meterological influence on the excess attenuation with various flow resistivities. The flow resistivity is simulated up to 30, 000 cgs rayls. There is no significant differences among results from spherical wave analysis for excess attenuation, from plane wave analysis, and from locally reacting analysis. This is validated only when the flow resistivity is more than 100 cgs rayls. For the determination of effective flow resistivity of ground by measuring the excess attenuation experimentally, it is highly recommended that the distance between source and receiver is about 2.5m, and that the height of them is 0.3-0.4 m in case that they have the same height. Under this proposed conditions, the flow resistivity of 6-month-passed asphalt ground is estimated to 5, 000 cgs rayls by comparing the measured excess attenuation with the calculated.

  • PDF

바이오 가스터빈 연소기의 비반응장과 반응장의 3차원 유동해석 (CFD Simulation of Non-reacting and Reacting Flows for a Gas Turbine Combustor Firing Biogas)

  • 안윤호;남삼식;최진훈;임지혁;김호근;전재철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.439-444
    • /
    • 2011
  • 최근 두산중공업은 바이오가스를 연료로 사용하는 가스터빈엔진을 개발하고 있다. 본 논문은 바이오 가스터빈엔진의 주요 구성품 중 하나인 연소기의 비반응장과 반응장 해석에 대한 것이다. 해석을 통해 연소기 설계 결과를 검증하고 다양한 Fuel Distribution Ratio에서의 연소기 작동 거동을 예측하였다. 해석 결과는 두산에서 자체 수행한 리그 시험 결과와 비교하였다. 해석 결과 연소기 압력 손실, 공기 분배비, 재순환 유동의 예측은 신뢰할 만한 수준이며, 낮은 Fuel Distribution Ratio 영역에서의 NOx 생성 추세는 다소 불일치하였다.

  • PDF

초음속 연소기 내의 연소 불안정 메커니즘 (Mechanism of Combustion Instability in Supersonic Combustor)

  • 최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2003
  • A series of computational simulations have been carried out for non-reacting and reacting flows in a supersonic combustor configuration with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure of 0.5 and 1.0 ㎫. The corresponding equivalence ratios are 0.17 and 0.33. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The role of the cavity, injection pressure, and amount of heat addition are examined systematically.

  • PDF

가열로 유동특성에 관한 수치해석 (Numerical Simulation of Flow Characteristics in a Heating Furnace)

  • 이동은;김창영;김상준;김종근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.511-516
    • /
    • 2001
  • The flow characteristics in a hot mill reheating furnace is numerically simulated in this study. Navier-Stokes equations for conservation of mass, momentum, energy are solved and the standard $k-\varepsilon$ model, mixture fraction/PDF model are used for the turbulent reacting flow in the furnace. Radiation heat transfer is incorporated by the P-1 method with the absorption coefficient evaluated using WSGGM. First, simulation results are obtained for the total furnace region with existing protective dam, and then the calculations are carried out only for the preheating zone in the furnace. In that zone, additional center darn is built in order to control the flow behavior of the inlet air and the combustion gas.

  • PDF

마이크로 사이클론 연소기의 화염 안정화 기구 (Flame Stabilization Mechanism of a Micro Cyclone Combustor)

  • 오창보;최병일;한용식;김명배;황철홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.139-144
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a component of mobile power generator (MPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately to prevent a flash-back. The flame shape stabilized inside the micro cyclone combustor was visualized experimentally and the flow field and the combustion characteristics of the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the overall flow and flame features of the combustor. The flame stabilization mechanism could be well understood using the velocity distribution inside the combustor. For only non-reacting case, it was found that a weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. It was also found that small regions that have a negative axial velocity exist near the fuel injection ports for both of non-reacting and reacting case. It was identify that a flame front was stabilized at the negative axial velocity regions near the fuel injection ports.

  • PDF

일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석 (Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field)

  • 고현;박병훈;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF