• 제목/요약/키워드: Reactant gas addition

검색결과 18건 처리시간 0.027초

Investigation of Temperature Effect on Electrode Reactions of Molten Carbonate Electrolysis Cells and Fuel Cells using Reactant Gas Addition Method

  • Samuel Koomson;Choong-Gon Lee
    • Korean Chemical Engineering Research
    • /
    • 제62권3호
    • /
    • pp.253-261
    • /
    • 2024
  • The impact of temperature on electrode reactions in 100 cm2 molten carbonate cells operating as Fuel Cells (FC) and Electrolysis Cells (EC) was examined using the Reactant Gas Addition (RA) method across a temperature range of 823 to 973 K. The RA findings revealed that introduction of H2 and CO2, reduced the overpotential at Hydrogen Electrode (HE) in both the modes. However, no explicit temperature dependencies were observed. Conversely, adding O2 and CO2 to the Oxygen Electrode (OE) displayed considerable temperature dependencies in FC mode which can be attributed to increased gas solubility due to the electrolyte melting at higher temperatures. In EC mode, there was no observed temperature dependence for overpotential. Furthermore, the addition of O2 led to a decrease in overpotential, while CO2 addition resulted in an increased overpotential, primarily due to changes in the concentration of O2 species.

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell

  • Lee C.G.;Kim D.H.;Hong S.W.;Park S.H.;Lim H.C.
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.77-83
    • /
    • 2006
  • Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.

용융탄산염형 연료전지에서 과전압에 미치는 전극두께의 영향 (Effect of Anode Thickness on the Overpotential in a Molten Carbonate Fuel Cell)

  • 이충곤;이성윤;류보현;김도형;임희천
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.34-39
    • /
    • 2010
  • 본 연구에서는 용융탄산염형 연료전지의 연료극 전극두께가 과전압에 미치는 영향을 $100\;cm^2$ 급 단위전지를 사용하여 검토하였다. 용융탄산염형 연료전지에서의 수소 산화속도는 충분히 빨라 전극면적이 성능에 크게 영향을 미치지 않을 수 있어, 본 연구에서는 전극의 기하학적 면적의 크기가 과 전압에 미치는 영향에 대해 연구하였다. 평가는 정상분극법과 비활성가스 계단형 첨가법 (ISA)와 반응물 첨가법 (RA)를 사용하여 연료극 두께 0.77 mm와 0.36 mm에 대해 수행하였다. 평가결과 두 전지에서 연료극 과전압이 거의 동일하게 관찰되어 연료극 두께에 의한 과전압의 차이는 발생하지 않았다.

기판 바이어스 DC 전원의 종류와 반응가스 분압비가 3성분계 B-C-N 코팅막의 합성과 마찰 특성에 미치는 영향 (Effects of DC Substrate Bias Power Sources and Reactant Gas Ratio on Synthesis and Tribological Properties of Ternary B-C-N Coatings)

  • 정다운;김두인;김광호
    • 한국표면공학회지
    • /
    • 제44권2호
    • /
    • pp.60-67
    • /
    • 2011
  • Ternary B-C-N coatings were deposited on Si(100) wafer substrate from $B_4C$ target by RF magnetron sputtering technique in $Ar+N_2+CH_4$ gas mixture. In this work, the effect of reactant gas ratio, $CH_4/(N_2+CH_4)$ on the composition, kinds and amounts of bonding states comprising B-C-N coatings were investigated using two different bias power sources of continuous and unipolar DCs. In addition, the tribological properties of coatings were studied with the composition and bonding state of coating. It was found that the substrate bias power had an effect on chemical composition, and all of the obtained coatings were nearly amorphous. Main bonding states of coatings were revealed from FTIR analyses to be h-BN, C-C, C-N, and B-C. The amount of C-C bonging mainly increased with increase of the reactant gas ratio. From our studies, both C-C and h-BN bonding states improved the tribological properties but B-C one was found to be harmful on those. The best coating from tribological points of view was found to be $BC_{1.9}N_{2.3}$ composition.

Microbial Inhibition Test of Sustained-Release Chlorine Dioxide Gas Freshness Retaining Agent

  • Choe, Yoowha
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.211-215
    • /
    • 2020
  • Currently, most of the chlorine dioxide gas is processed at the beginning of storage or distribution. It has the disadvantage of not being able to continuously process gas since there is no system that can continuously process it during the distribution process. Therefore, in order to minimize changes in freshness and quality during the distribution process of agrifood, there is a need for a sustained-release chlorine dioxide gas treatment technology that can be continuously released. Therefore, in this study, the film to be used was examined so that the chlorine dioxide gas can be continuously released for a certain period of time, the concentration of the reactant and the viscosity at the time of the reaction were determined, and a chlorine dioxide gas gel pack was manufactured using this optimal condition. In addition, the gel pack was used to measure the amount of chlorine dioxide gas released and the sterilization effect of food poisoning bacteria.

수소 환원기체와 (hfac)Cu(3,3-dimethyl-1-butene) 증착원을 이용한 Pulsed MOCVD로 Cu seed layer 증착 특성에 미치는 영향에 관한 연구 (Pulsed MOCVD of Cu Seed Layer Using a (hfac)Cu(3,3-dimethyl-1-butene) Source and H2 Reactant)

  • 박재범;이진형;이재갑
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.619-626
    • /
    • 2004
  • Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and $H_2$ reactant at the deposition temperatures from 50 to $100^{\circ}C$. The Cu thickness increased proportionally to the number of cycles, and the growth rate was in the range from 3.5 to $8.2{\AA}/cycle$, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for films thicker than 100 nm. In addition about a $90\%$ step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. $H_2$, introduced as a reactant gas, can play an active role in achieving highly conformal coating, with increased grain sizes.

일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향 (Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation)

  • 안호근;김기중;정민철
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.720-725
    • /
    • 2011
  • 금속질산염과 염화금산을 전구체로 사용하여 다양한 금속산화물($$Al_{2}O_{3}$, ZnO, $Fe_{2}O_{3}$, $Cr_{2}O_{3}$, $MnO_{2}$, CuO, NiO, $Co_{3}O_{4}$)에 담지된 금촉매를 공침법을 이용하여 제조한 후, 일산화탄소 산화반응에서 수분첨가의 영향을 검토하였다. 이들 중 $Co_{3}O_{4}$와 ZnO에 담지된 금촉매가 일산화탄소에 대하여 높은 활성을 보여주었다. 반응가스 중에 수분이 첨가될 때 Au/$Co_{3}O_{4}$ 촉매는 활성이 약간 감소하였으나, Au/ZnO 촉매에서는 활성이 크게 증가하여 수분에 의한 일산화탄소 산화 활성은 담체의 종류에 크게 의존함을 알 수 있었다. 반응가스 중에 포함된 수분에 관계없이 반응 전과 후의 Au(5 wt%)/ZnO 촉매의 금입자 크기는 거의 변하지 않아 활성이 감소되는 이유는 금입자들의 소결에 의한 영향보다는 카보네이트와 같은 화학종에 의해 불활성화가 일어남을 알 수 있었으며, 이 화학종은 수분의 첨가에 의해 이산화탄소로 분해되어 활성이 증가한 것으로 생각된다.

다양한 액상 수위/부피 조건에서의 300kHz 초음파 캐비테이션 산화반응 분석 연구 (Sonochemical Oxidation Reactions in 300 kHz Sonoreactor for Various Liquid Height/Volume Conditions)

  • 이성은;손영규
    • 한국물환경학회지
    • /
    • 제38권5호
    • /
    • pp.211-219
    • /
    • 2022
  • In this study, the effect of liquid height/volume on sonochemical oxidation reactions was investigated in 300 kHz sonoreactors. The gas mixture of Ar/O2 (50:50) was applied in two modes including saturation and sparging, and zero-order reaction (KI dosimetry) and first-order reaction (Bisphenol A (BPA) degradation) were used to quantitatively analyze sonochemical oxidation reactions. For the zero-order reaction, the highest sonochemical oxidation activity was obtained for the liquid height of 5𝛌, and the lowest height for both the gas saturation and sparging conditions. In addition, the sparging did not enhance the sonochemical oxidation activity for all height conditions except for 50𝛌, where very low activity was obtained. It was found that in sonochemiluminescence (SCL) images the sonochemical active zone was formed adjacent to the liquid surface for the gas sparging condition due to the formation of the standing wave field while the active zone was formed adjacent to the transducer at the bottom due to the blockage of ultrasound. For the first-order reaction, the highest activity was also obtained at 5𝛌 and the comparison based on the reactant mass was not appropriate because the concentration of the reactant (BPA) decreased significantly as the reaction time elapsed. Consequently, it was revealed that the determination of optimal liquid height (ultrasound irradiation distance) based on the wavelength of the applied ultrasound frequency was very important for the optimal design of sonoreactors in terms of reaction efficiency and reactor size.

Analysis of Flow Rate Inducing Voltage Loss in a 100 cm2 Class Molten Carbonate Fuel Cell

  • Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.20-25
    • /
    • 2011
  • This work focuses on the behavior of the overpotential increase due to a utilization rise in a molten carbonate fuel cell. The behavior is generally explained by Nernst loss, which is a kind of voltage loss due to the thermodynamic potential gradients in a polarization state due to the concentration distribution of reactant species through the gas flow direction. The evaluation of Nernst loss is carried out with a traditional experimental method of constant gas utilization (CU). On the other hand, overpotential due to the gas-phase mass-transport resistance at the anode and cathode shows dependence on the utilization, which can be measured using the inert gas step addition (ISA) method. Since the Nernst loss is assumed to be due to the thermodynamic reasons, the voltage loss can be calculated by the Nernst equation, referred to as a simple calculation (SC) in this work. The three values of voltage loss due to CU, ISA, and SC are compared, showing that these values rise with increases in the utilization within acceptable deviations. When we consider that the anode and cathode reactions are significantly affected by the gas-phase mass transfer, the behavior strongly implies that the voltage loss is attributable not to thermodynamic reasons, namely Nernst loss, but to the kinetic reason of mass-transfer resistance in the gas phase.