• Title/Summary/Keyword: Re-Ranking

Search Result 60, Processing Time 0.029 seconds

Korean-English statistical speech translation Using n-best re-ranking (n-best 리랭킹을 이용한 한-영 통계적 음성 번역)

  • Lee, Dong-Hyeon;Lee, Jong-Hoon;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.171-176
    • /
    • 2006
  • 본 논문에서는 n-best 리랭킹을 이용한 한-영 통계적 음성 번역 시스템에 대해 논하고 있다. 보통의 음성 번역 시스템은 음성 인식 시스템, 자동 번역 시스템, 음성 합성 시스템이 순차적으로 결합되어 있다. 하지만 본 시스템은 음성 인식 오류에 보다 강인한 시스템을 만들기 위해 음성 인식 시스템으로부터 n-best 인식 문장을 추출하여 번역 결과와 함께 리랭킹의 과정을 거친다. 자동 번역 시스템으로 구절기반 통계적 자동 번역 모델을 사용하여, 음성 인식기의 발음 모델에서 기본 단어 단위와 맞추어 번역 모델과 언어 모델을 훈련시킴으로써 음성 번역 시스템에서 형태소 분석기를 제거할 수 있다. 또한 음성 인식 시스템에서 상황 별로 언어 모델을 분리하여 처리함으로써 자동 번역 시스템에 비해 부족한 음성 인식 시스템의 처리 범위를 보완할 수 있었다.

  • PDF

Dense Retrieval using Pretrained RoBERTa with Augmented Query (증강된 질문을 이용한 RoBERTa 기반 Dense Passage Retrieval)

  • Jun-Bum Park;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.141-145
    • /
    • 2022
  • 다중 문서 기반 대화 시스템에서 응답 시스템은 올바른 답변을 생성하기 위해서 여러 개의 문서 중 질문과 가장 관련 있는 문서를 검색하는 것부터 시작해야 한다. DialDoc 2022 Shared Task[1]를 비롯한 최근의 연구들은 대화 시스템의 문서 검색 과정을 위해 Dense Passage Retrieval(DPR)[2] 모델을 사용하고 있으며 검색기의 성능 개선을 위해 Re-ranking과 Hard negative sampling 같은 방법들이 연구되고 있다. 본 논문에서는 문서에 기반하는 대화 데이터의 양이 적거나 제한될 경우, 주어진 데이터를 효율적으로 활용해 보고자 검색기를 생성 모델을 이용하여 문서의 엔티티를 기반으로 질문을 생성하고 기존 데이터에 증강하는 방법을 제시했으며 실험의 결과로 MRR metric의 경우 0.96 ~ 1.56의 성능 향상을, R@1 metric의 경우 1.2 ~ 1.57의 성능 향상을 확인하였다.

  • PDF

Natural Langugae Inference as Re-ranking for Multiple Question Answering (질의응답 결과 재순위화를 위한 자연어 추론 모델)

  • Lee, Jihyung;Lee, Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.405-409
    • /
    • 2021
  • 자연어 추론은 전제가 주어졌을때 특정 가설이 전제에 기반해 합당한지 검증하는 자연어 처리의 하위 과제이다. 우리는 질의응답 시스템이 도출한 정답 및 근거 문서를 자연어 추론 모델로 검증할 수 있다는 점에 착안하여, HotpotQA 질의응답 데이터셋을 자연어 추론 데이터 형식으로 변환한뒤 자연어 추론 모델을 학습하여 여러 질의응답 시스템이 생성한 결과물을 재순위화하고자 하였다. 그 결과로, 자연어 추론 모델에 의해 재순위화된 결과물은 기존 단일 질의응답 시스템의 결과물보다 대체로 향상된 성능을 보여주었다.

  • PDF

Retrieval Model Re-ranking Method using 'Question-Passage' Attention ('질문-단락'간 주의 집중을 이용한 검색 모델 재순위화 방법)

  • Jang, Youngjin;Kim, Harksoo;Ji, Hyesung;Lee, Chunghee
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.411-414
    • /
    • 2019
  • 검색 모델은 색인된 문서 내에서 입력과 유사한 문서를 검색하는 시스템이다. 최근에는 기계독해 모델과 통합하여 질문에 대한 답을 검색 모델의 결과에서 찾는 연구가 진행되고 있다. 위의 통합 모델이 좋은 결과를 내기 위해서는 검색 모델의 높은 성능이 요구된다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 재순위화 모델을 제안한다. 검색 모델의 결과 후보를 일괄적으로 입력받고 '질문-단락'간 주의 집중을 계산하여 재순위화 한다. 실험 결과 P@1 기준으로 기존 검색 모델 성능대비 5.58%의 성능 향상을 보였다.

  • PDF

Passage Re-ranking Model using N-gram attention between Question and Passage (질문-단락 간 N-gram 주의 집중을 이용한 단락 재순위화 모델)

  • Jang, Youngjin;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.554-558
    • /
    • 2020
  • 최근 사전학습 모델의 발달로 기계독해 시스템 성능이 크게 향상되었다. 하지만 기계독해 시스템은 주어진 단락에서 질문에 대한 정답을 찾기 때문에 단락을 직접 검색해야하는 실제 환경에서의 성능 하락은 불가피하다. 즉, 기계독해 시스템이 오픈 도메인 환경에서 높은 성능을 보이기 위해서는 높은 성능의 검색 모델이 필수적이다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 오픈 도메인 기계독해를 위한 단락 재순위화 모델을 제안한다. 제안 모델은 합성곱 신경망을 이용하여 질문과 단락을 구절 단위로 표현했으며, N-gram 구절 사이의 상호 주의 집중을 통해 질문과 단락 사이의 관계를 효과적으로 표현했다. KorQuAD를 기반으로한 실험에서 제안모델은 MRR@10 기준 93.0%, Top@1 Precision 기준 89.4%의 높은 성능을 보였다.

  • PDF

Implementation of Specific Target Detection and Tracking Technique using Re-identification Technology based on public Multi-CCTV (공공 다중CCTV 기반에서 재식별 기술을 활용한 특정대상 탐지 및 추적기법 구현)

  • Hwang, Joo-Sung;Nguyen, Thanh Hai;Kang, Soo-Kyung;Kim, Young-Kyu;Kim, Joo-Yong;Chung, Myoung-Sug;Lee, Jooyeoun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.49-57
    • /
    • 2022
  • The government is making great efforts to prevent crimes such as missing children by using public CCTVs. However, there is a shortage of operating manpower, weakening of concentration due to long-term concentration, and difficulty in tracking. In addition, applying real-time object search, re-identification, and tracking through a deep learning algorithm showed a phenomenon of increased parameters and insufficient memory for speed reduction due to complex network analysis. In this paper, we designed the network to improve speed and save memory through the application of Yolo v4, which can recognize real-time objects, and the application of Batch and TensorRT technology. In this thesis, based on the research on these advanced algorithms, OSNet re-ranking and K-reciprocal nearest neighbor for re-identification, Jaccard distance dissimilarity measurement algorithm for correlation, etc. are developed and used in the solution of CCTV national safety identification and tracking system. As a result, we propose a solution that can track objects by recognizing and re-identification objects in real-time within situation of a Korean public multi-CCTV environment through a set of algorithm combinations.

Performance Evaluation of Video Recommendation System with Rich Metadata (풍부한 메타데이터를 가진 동영상 추천 시스템의 성능 평가)

  • Min Hwa Cho;Da Yeon Kim;Hwa Rang Lee;Ha Neul Oh;Sun Young Lee;In Hwan Jung;Jae Moon Lee;Kitae Hwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2023
  • This paper makes it possible to search videos based on sentence by improving the previous research which automatically generates rich metadata from videos and searches videos by key words. For search by sentence, morphemes are analyzed for each sentence, keywords are extracted, weights are assigned to each keyword, and some videos are recommended by applying a ranking algorithm developed in the previous research. In order to evaluate performance of video search in this paper, a sufficient amount of videos and sufficient number of user experiences are re required. However, in the current situation where these are insufficient, three indirect evaluation methods were used: evaluation of overall user satisfaction, comparison of recommendation scores and user satisfaction, and evaluation of user satisfaction by video categories. As a result of performance evaluation, it was shown that the rich metadata construction and video recommendation implementation in this paper give users high search satisfaction.

Priority Determination of the Projects for Ecological Restoration of the Stream : Case Study for Han River Estuary (생태하천 복원사업 우선순위 선정에 대한 연구: 한강하구를 중심으로)

  • Seonuk Baek;Junhak Lee;Seungmin Lee;Haneul Lee;Hung Soo Kim;Soojun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.64-73
    • /
    • 2023
  • Before 2022, there was a lot of confusion in the process of planning and implementing the projects for ecological restoration of the stream due to dualization the principal agent of stream management. Because the Ministry of Environment took charge of the project in 2022, securing the health of aquatic ecosystem of stream became an essential factor in the project. Therefore, in this study, the streams that require the project for ecological restoration was selected in Han River estuary, where it is essential to secure the health of the stream aquatic ecosystem as blackish water zone and Ramsar wetland are located. Physical, chemical, spatial/humanistic, health of aquatic ecosystems evaluation indexes were calculated based on the detailed facts and figures of the project for ecological restoration of the stream in the beginning. Ranking, re-scaling, z-score, and t-score normalization methods were applied to the calculated evaluation index, and the values were compared and analyzed. After that, the entropy weight method was applied to each evaluation index. Through this process, the streams(Mokgamcheon, Anyangcheon etc.) that require the project for ecological restoration were selected for the purpose of securing the health of the aquatic ecosystem in Han River estuary. The result of this study can be used as basic research data in the process of selecting the priority determination of the projects for ecological restoration of the stream.

A Ranking Cleaning Policy for Embedded Flash File Systems (임베디드 플래시 파일시스템을 위한 순위별 지움 정책)

  • Kim, Jeong-Ki;Park, Sung-Min;Kim, Chae-Kyu
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.399-404
    • /
    • 2002
  • Along the evolution of information and communication technologies, manufacturing embedded systems such as PDA (personal digital assistant), HPC (hand -held PC), settop box. and information appliance became realistic. And RTOS (real-time operating system) and filesystem have been played essential re]os within the embedded systems as well. For the filesystem of embedded systems, flash memory has been used extensively instead of traditional hard disk drives because of embedded system's requirements like portability, fast access time, and low power consumption. Other than these requirements, nonvolatile storage characteristic of flash memory is another reason for wide adoption in industry. However, there are some technical challenges to cope with to use the flash memory as an indispensable component of the embedded systems. These would be relatively slow cleaning time and the limited number of times to write-and-clean. In this paper, a new cleaning policy is proposed to overcome the problems mentioned above and relevant performance comparison results will be provided. Ranking cleaning policy(RCP) decides when and where to clean within the flash memory considering the cost of cleaning and the number of times of cleaning. This method will maximize not only the lifetime of flash memory but also the performance of access time and manageability. As a result of performance comparison, RCP has showed about 10 ~ 50% of performance evolution compared to traditional policies, Greedy and Cost-benefit methods, by write throughputs.

Timeline Tag Cloud Generation for Broadcasting Contents using Blog Postings (블로그 포스팅을 이용한 방송 콘텐츠 영상의 타임라인 단위 태그 클라우드 생성)

  • Son, Jeong-Woo;Kim, Hwa-Suk;Kim, Sun-Joong;Cho, Keeseong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.637-641
    • /
    • 2015
  • Due to the recent increasement of user created contents like SNS, blog posts, and so on, broadcast contents are actively re-construction by its users. Especially, on some genres like drama, movie, various information from cars and film sites to clothes and watches in a content is spreaded out to other users through blog postings. Since such information can be an additional information for the content, they can be used for providing high-quality broadcast services. For this purpose, in this paper, we propose timeline tag cloud generation method for broadcasting contents. In the proposed method, blog postings on the target contents are first gathered and then, images and words around images are extracted from a blog post as a tag set. An extracted tag set is tagged on a specific timeline of the target content. In experiments, to prove the efficiency of the proposed method, we evaluated the performances of the proposed image matching and tag cloud generation methods.