• Title/Summary/Keyword: Re-Identification

Search Result 289, Processing Time 0.033 seconds

Color Space Exploration and Fusion for Person Re-identification (동일인 인식을 위한 컬러 공간의 탐색 및 결합)

  • Nam, Young-Ho;Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1782-1791
    • /
    • 2016
  • Various color spaces such as RGB, HSV, log-chromaticity have been used in the field of person re-identification. However, not enough studies have been done to find suitable color space for the re-identification. This paper reviews color invariance of color spaces by diagonal model and explores the suitability of each color space in the application of person re-identification. It also proposes a method for person re-identification based on a histogram refinement technique and some fusion strategies of color spaces. Two public datasets (ALOI and ImageLab) were used for the suitability test on color space and the ImageLab dataset was used for evaluating the feasibility of the proposed method for person re-identification. Experimental results show that RGB and HSV are more suitable for the re-identification problem than other color spaces such as normalized RGB and log-chromaticity. The cumulative recognition rates up to the third rank under RGB and HSV were 79.3% and 83.6% respectively. Furthermore, the fusion strategy using max score showed performance improvement of 16% or more. These results show that the proposed method is more effective than some other methods that use single color space in person re-identification.

Deep Neural Networks Learning based on Multiple Loss Functions for Both Person and Vehicles Re-Identification (사람과 자동차 재인식이 가능한 다중 손실함수 기반 심층 신경망 학습)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.891-902
    • /
    • 2020
  • The Re-Identification(Re-ID) is one of the most popular researches in the field of computer vision due to a variety of applications. To achieve a high-level re-identification performance, recently other methods have developed the deep learning based networks that are specialized for only person or vehicle. However, most of the current methods are difficult to be used in real-world applications that require re-identification of both person and vehicle at the same time. To overcome this limitation, this paper proposes a deep neural network learning method that combines triplet and softmax loss to improve performance and re-identify people and vehicles simultaneously. It's possible to learn the detailed difference between the identities(IDs) by combining the softmax loss with the triplet loss. In addition, weights are devised to avoid bias in one-side loss when combining. We used Market-1501 and DukeMTMC-reID datasets, which are frequently used to evaluate person re-identification experiments. Moreover, the vehicle re-identification experiment was evaluated by using VeRi-776 and VehicleID datasets. Since the proposed method does not designed for a neural network specialized for a specific object, it can re-identify simultaneously both person and vehicle. To demonstrate this, an experiment was performed by using a person and vehicle re-identification dataset together.

The Improved Joint Bayesian Method for Person Re-identification Across Different Camera

  • Hou, Ligang;Guo, Yingqiang;Cao, Jiangtao
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.785-796
    • /
    • 2019
  • Due to the view point, illumination, personal gait and other background situation, person re-identification across cameras has been a challenging task in video surveillance area. In order to address the problem, a novel method called Joint Bayesian across different cameras for person re-identification (JBR) is proposed. Motivated by the superior measurement ability of Joint Bayesian, a set of Joint Bayesian matrices is obtained by learning with different camera pairs. With the global Joint Bayesian matrix, the proposed method combines the characteristics of multi-camera shooting and person re-identification. Then this method can improve the calculation precision of the similarity between two individuals by learning the transition between two cameras. For investigating the proposed method, it is implemented on two compare large-scale re-ID datasets, the Market-1501 and DukeMTMC-reID. The RANK-1 accuracy significantly increases about 3% and 4%, and the maximum a posterior (MAP) improves about 1% and 4%, respectively.

Multiple-Shot Person Re-identification by Features Learned from Third-party Image Sets

  • Zhao, Yanna;Wang, Lei;Zhao, Xu;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.775-792
    • /
    • 2015
  • Person re-identification is an important and challenging task in computer vision with numerous real world applications. Despite significant progress has been made in the past few years, person re-identification remains an unsolved problem. This paper presents a novel appearance-based approach to person re-identification. The approach exploits region covariance matrix and color histograms to capture the statistical properties and chromatic information of each object. Robustness against low resolution, viewpoint changes and pose variations is achieved by a novel signature, that is, the combination of Log Covariance Matrix feature and HSV histogram (LCMH). In order to further improve re-identification performance, third-party image sets are utilized as a common reference to sufficiently represent any image set with the same type. Distinctive and reliable features for a given image set are extracted through decision boundary between the specific set and a third-party image set supervised by max-margin criteria. This method enables the usage of an existing dataset to represent new image data without time-consuming data collection and annotation. Comparisons with state-of-the-art methods carried out on benchmark datasets demonstrate promising performance of our method.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Evaluation of Recurrent Neural Network Variants for Person Re-identification

  • Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.193-199
    • /
    • 2017
  • Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.

Analysis of k Value from k-anonymity Model Based on Re-identification Time (재식별 시간에 기반한 k-익명성 프라이버시 모델에서의 k값에 대한 연구)

  • Kim, Chaewoon;Oh, Junhyoung;Lee, Kyungho
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.43-52
    • /
    • 2020
  • With the development of data technology, storing and sharing of data has increased, resulting in privacy invasion. Although de-identification technology has been introduced to solve this problem, it has been proved many times that identifying individuals using de-identified data is possible. Even if it cannot be completely safe, sufficient de-identification is necessary. But current laws and regulations do not quantitatively specify the degree of how much de-identification should be performed. In this paper, we propose an appropriate de-identification criterion considering the time required for re-identification. We focused on the case of using the k-anonymity model among various privacy models. We analyzed the time taken to re-identify data according to the change in the k value. We used a re-identification method based on linkability. As a result of the analysis, we determined which k value is appropriate. If the generalized model can be developed by results of this paper, the model can be used to define the appropriate level of de-identification in various laws and regulations.

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.

People Re-identification: A Multidisciplinary Challenge (사람 재식별: 학제간 연구 과제)

  • Cheng, Dong-Seon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.135-139
    • /
    • 2012
  • The wide diffusion of internet and the overall increased reliance on technology for information communication, dissemination and gathering have created an unparalleled mass of data. Sifting through this data is defining and will define in the foreseeable future a big part of contemporary computer science. Within this data, a growing proportion is given by personal information, which represents a unique opportunity to study human activities extensively and live. One important recurring challenge in many disciplines is the problem of people re-identification. In its broadest definition, re-identification is the problem of newly recognizing previously identified people, such as following an unknown person while he walks through many different surveillance cameras in different locations. Our goals is to review how several diverse disciplines define and meet this challenge, from person re-identification in video-surveillance to authorship attribution in text samples to distinguishing users based on their preferences of pictures. We further envision a situation where multidisciplinary solutions might be beneficial.

Structural Relationship among Regional Identity, Team Identification, and Re-attend Intention (지역정체성과 팀정체성, 재관람의도의 구조적 관계 : 프로축구 산업을 중심으로)

  • Kim, Ki-Tak
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.404-413
    • /
    • 2011
  • The research for the regional identity including relationships with professional sport team was caused by local autonomy system and localism. This study was to verify structural relationships among regional identity, team identification and re-attend intention of professional soccer spectators. Data were collected from spectators of professional soccer game in 'D' metropolitan city. Using purposive sampling method, a total of 397 samples were used for analysis. The statistical techniques for data analysis were descriptive analysis, frequency analysis, reliability analysis, correlation analysis, confirmatory factor analysis, and structural equation modeling by SPSS 15.0 and AMOS 7 programs. The results of this study were that regional identity have a positive effects on team identification. Also, team identification have a positive effects on re-attend intention. Theoretical and practical implications and future research directions were provided.