• Title/Summary/Keyword: Rayleigh energy method

Search Result 125, Processing Time 0.03 seconds

Modal characteristics of partially perforated rectangular plate with triangular penetration pattern

  • Jhung, Myung J.;Jeong, Kyeong H.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.583-603
    • /
    • 2015
  • There are so many applications of perforated pates with various penetration patterns. If they are penetrated regularly, it can be represented by solid plate with equivalent material properties, which has a benefit of finite element modelling and reducing computation time for the analysis. Because the equivalent material properties suggested already are not proper to be applicable for the dynamic analysis, it is necessary to extract the equivalent material properties for the dynamic analysis. Therefore, in this study, the equivalent modulus of elasticity are obtained for the perforated plate with a triangular penetration pattern by comparing the natural frequencies of the perforated plate with those of solid plate, which are represented with respect to the ligament efficacy. Using the equivalent material properties suggested, the modal analyses of the partially perforated rectangular plate with a triangular penetration pattern are performed and its applicability is shown by comparing natural frequencies of perforated and homogeneous solid plates from finite element method and analytical method.

Natural Convection in the Annulus between a Horizontal Conducting Tube and a Cylinder with Spacers (수평전도관(水平傳導管)과 원통(圓筒)사이에 격판(隔板)을 가진 환상공간(環狀空間)에서의 자연대류(自然對流))

  • Lee, Sang-Hoon;Lee, Bum-Chul;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.86-97
    • /
    • 1987
  • Natural convection in the annulus between a horizontal conducting tube and a cylinder with spacers has been studied by 2-dimensional numerical method with finite difference techniques. The effects of Rayleigh number, conductivities of conducting tube and spacer, and position of spacers were studied analytically. In case of vertical spacers, the maximum local Nusselt number appears at ${\theta}{\approx}50^{\circ}$ in a conducting tube and ${\theta}{\approx}30^{\circ}$ in an outer cylinder, The local Nusselt numbers show positive values on the lower spacer, but negative values on the surface of the upper spacer. In case of horizontal spacers, the flow over the spacer is more active than that of under the spacer as the Rayleigh number increases. The maximum local Nusselt appeares at ${\theta}=180^{\circ}$ in a conducting tube and at ${\theta}=0^{\circ}$ in an outer cylinder. The local Nusselt numbers show positive values on the upward surface, but negative values on the downward surface of spacer. As the dimensionless conductivity increases, the mean Nusselt number remarkably increases at $K_w/K_f<48$ and show almost even at $K_w/K_f{\ge}48$. The mean Nusselt number of a conducting tube with vertical spacers is 5.12 percent less and with horizontal spacers is 11.33 percent less than that of a conducting tube without spacer at $Ra=10^4$, Pr = 0.7 and $K_w/K_f=48$.

  • PDF

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

NUMERICAL ANALYSIS ON THE NATURAL CONVECTION IN A LONG HORIZONTAL PIPE WITH THERMAL STRATIFICATION

  • Ahn, Jang-Sun;Park, Byeong-Ho;Kim, Seoug-Beom;Kim, Eun-Kee;Park, Man-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.95-101
    • /
    • 1996
  • In this paper, the steady 2-dimensional model for a long horizontal line with different end temperatures undergoing natural convection at very high Rayleigh number is proposed to numerically investigate the heat transfer and flow characteristics. The dimensionless governing equations are solved by using SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm which is developed using control volumes and staggered grids. The numerical results are verified by comparison with the operating PWR test data. The analysis focuses on the effects of variation of the heat transfer rates at the pipe surface, the thermal conductivities of the pipe material and the thickness of the pipe wall on the thermal stratification. The results show that the heat transfer rate at the pipe surface is the controlling parameter. A significant reduction and disappearance of thermal stratification phenomenon is observed at the Biot number of 5.0$\times$10$^{-2}$. The results also show that the increment of the thermal conductivity and thickness of the wall weakens the thermal stratification and somewhat reduces azimuthal temperature gradient in the pipe wall. Those effects are however minor, when compared with those due to the variation of the heat transfer rates at the surface of the pipe wall.

  • PDF

Residual Stress Measurement of Micro Gold Electroplated Structure (마이크로 금 전해 도금 구조물의 잔류응력 측정)

  • Baek, Chang-Wook;Ahn, Yoo-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.195-200
    • /
    • 2000
  • In order to find a residual stress in the micro-machined beam, first natural frequency of the beam that has the residual stress inside is analyzed using the Rayleigh's energy method. Micro gold electroplated structure is fabricated by surface micro-machining process. The made structure is clamped-clamped beam and its 1st natural frequency is measured by resonance method. For the better estimation of the residual stress, an equivalent length of micro-machined beam to ideal beam is calculated by FEM. The residual stress is estimated from the equivalent length and the measured natural frequency.

  • PDF

Study on Structural Vibration Analysis and Design Optimization of Rotating Composite Cylindrical Shells with Cutout (회전운동을 고려한 Cutout이 있는 복합재료 원통셸의 구조진동해석 및 최적설계)

  • 이영신;김영완
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.467-476
    • /
    • 1998
  • The free vibration analysis and design optimization of the rotating composite cylindrical shells with a rectangular cutout are investigated by theoretical method. The Love's thin shell theory is used to derive the frequency equation. The theoretical results are obtained by application of the energy method employing the Rayleigh-Ritz procedure. The used circumferential vibration modes are trigonometric functions, the axial modes are the beam modal functions chosen to satisfy the prescribed boundary conditions. To check the validity, the theoretical results are compared with experimental, FEM and other theoretical results.

  • PDF

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

Cooperative Spectrum Sensing in Cognitive Radio Systems with Weight Value Applied (인지무선 시스템에서 부사용자의 거리에 따른 가중치가 적용된 협력 스펙트럼 센싱)

  • Yun, Heesuk;Yun, Jaesoon;Bae, Insan;Jang, Sunjeen;Kim, Jaemoung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • In this paper, we propose weighted detection probability with distance between primary user and secondary users by using cooperative spectrum sensing based on energy detection. And we analysis and simulate the result. We suggest different distance between primary user and secondary users and the wireless channel between primary user and secondary users is modeled as Gaussian channel. From the simulation results of the cooperative spectrum sensing with weighted method make coverage bigger compared with non-weight, and We show higher sensing efficiency when we put weight detection probability than before method.

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.