• Title/Summary/Keyword: Rayleigh Convection

Search Result 238, Processing Time 0.021 seconds

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION (Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.62-68
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from Ra=$2{\times}10^6$ to Ra=$10^9$ and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) (Nu=$0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) (N=$0.124Ra^{0.309}$) in the 'hard' convective turbulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh-Benard convection.

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION WITH THE SECOND-MOMENT TURBULENCE MODEL (이차모멘트 난류모델을 사용한 Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.111-117
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from $Ra=2{\times}10^6$ to $Ra=10^9$, and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) ($Nu=0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) ($Nu=0.124Ra^{0.309}$) in the 'hard' convective tubulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh Benard convection.

  • PDF

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Bifurcation to Chaotic Thermal Convection in a Horizontal Annulus (수평 환형 공간에서의 혼돈 열대류로의 분기)

  • Yoo, Joo-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1210-1218
    • /
    • 2000
  • Thermal convection in a horizontal annulus is considered, and the bifurcation phenomena of flows from time-periodic to chaotic convection are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady flow bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-tripling bifurcation occurs with further increase of the Rayleigh number. Chaotic convection is established after a period-doubling bifurcation. A periodic convection with period 4 appears after the first chaotic convection. At still higher Rayleigh numbers, chaotic flows reappear.

An Anomalous Bifurcation in Natural Convection between Two Horizontal Plates with Periodic Temperatures (주기적인 온도를 갖는 두 수평 평판 사이에서의 자연 대류에서의 이례적인 분기 현상)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • This study investigates the transition of flows in a natural convection problem with periodic wall temperatures of the form, T/sub L/=T₁+δ Tsinκχ and T/sub L/=T₂+δ Tsinκχ .The fluid considered is air with P/sub γ/=0.7. In the conduction-dominated regime with a small Rayleigh number, two large cells are formed over one wave length, for all wave numbers. When k≤1.8, the flow becomes unstable with increase of the Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The flow patterns are classified by the number of eddies over one wave length, and several kinds of transition phenomena, such as 2→3→4, 4→3→2, and 2→4 eddy flow, occur with increase( or decrease) of the Rayleigh number. Dual solutions are found above a critical Rayleigh number, and an anomalous bifurcation is observed.

Numerical Analysis on Natural Convection Heat Transfer in an Enclosure of the Transformer Model (전기 변압기 형상 내부의 밀폐공간 내에서 층류 자연대류 열전달 현상의 수치해석)

  • Oh, Keon Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.106-115
    • /
    • 1992
  • Numerical analysis of the laminar natural convection in an enclosure of the 20KVA oil-immeresed transformer is presented. The core in the transformer is modelled as a rectangular cylinder and calculation is carried out for $Ra=10^3-10^6$. The correlating equation between the inner cylinder mean Nusselt numbers and Rayleigh numbers can be obtained. The conduction and convection regimes for the variation of Rayleigh numbers are well represented in the temperature distributions along the side wall of the inner cylinder. For high Rayleigh numbers, it is found that the recirculating flow in the enclosure above the inner cylinder is divided into two recirculation regions.

  • PDF

A numerical study of natural convection in a square enclosure with a circular cylinder for high Rayleigh number (높은 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Yu, Dong-Hun;Yoon, Hyun-Sik;Ha, Man-Yeong;Kim, Byeong-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2744-2749
    • /
    • 2008
  • Numerical calculations are carried out for the natural convection induced by temperature difference between a cold outer square cylinder and a hot inner circular cylinder for Rayleigh number of $Ra=10^7$. This study investigates the effect of the inner cylinder location on the heat transfer and fluid flow. The location of inner circular cylinder ($\delta$) is changed vertically along the center-line of square enclosure. The natural convection bifurcates from unsteady to steady state according to $\delta$. Two critical positions of ${\delta}_{C,L}$ and ${\delta}_{C,U}$ as a lower bound and an upper bound are ${\delta}_{C,L}=0.05$ and ${\delta}_{C,U}=0.18$, respectively. Within the defined bounds, the thermal and flow fields are steady state. When the inner cylinder locates at ${\delta}{\geq}{\delta}_{C,U}$, the space between the upper surface of inner cylinder and the top surface of the enclosure forms a relatively shallow layer where the natural convection characterized as the pure Rayleigh-Benard convection forms alternately the upwelling and downwelling plums, as a result that a series of cells known as Benard cells is derived.

  • PDF

MULTIPLE SOLUTIONS IN NATURAL CONVECTION BETWEEN TWO HORIZONTAL PLATES WITH SMALL MAGNITUDE NON-UNIFORM TEMPERATURE IN THE UPPER PLATE (위 평판이 작은 불균일 온도를 갖는 두 수평 평판 사이의 자연 대류에서의 다중해)

  • Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.64-70
    • /
    • 2016
  • Multiple solutions in natural convection of water with Pr=7 between two horizontal plates with small magnitude non-uniform temperature distribution in the upper plate is numerically investigated. The dimensionless temperature of upper plate is ${\theta}={\epsilon}sinkx$. Two upright cells are formed over one wave length in the conduction-dominated regime of small Rayleigh number. However, multicellular convection occurs above a critical Rayleigh number for small wave number. When k = 1.5, dual solutions are found and a transition of $6{\rightarrow}4$ eddy flow occurs with decrease of Rayleigh number. When k = 0.75, two, three, four and five multiple solutions are observed. Transitions of $14{\rightarrow}12$, $12{\rightarrow}10$, $10{\rightarrow}8$ and $6{\rightarrow}8$ eddy flow occur with decrease of Rayleigh number.

Multiple Solutions for Natural Convection Between Two Horizontal Plates with Periodic Temperatures (주기적인 온도를 갖는 두 수평 평판 사이에서 자연 대류에 대한 다중해)

  • Yoo, Joo-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1440-1448
    • /
    • 2004
  • Multiple solutions in natural convection of air (Pr=0.7) between two horizontal walls with mean temperature difference and the same periodic nob-uniformities are investigated. An analytical solution is found for small Rayleigh number, and the general solution is investigated by using a numerical method. In the conduction-dominated regime, two upright cells are formed between two walls over one wave length. When the wave number is small, the flow becomes unstable with increase of the Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The multicellular flows at high Rayleigh numbers consist of approximately square-shape cells. And several kinds of multiple flows classified by the number of cells are found.

Oscillatory Motion of Natural Convection in a Square Enclosure with a Horizontal Partition (정사각형 밀폐공간내에서 수평격판에 의한 자연대류의 진동현상)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 1993
  • An oscillatory motion of natural convection in a two-dimensional square enclosure fitted with a horizontal partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection has perfectly shown the periodicity with the decrease of Rayleigh number, and the stability was reduced to a chaotic state with the increase of Rayleigh number. The period of oscillation gets shorten with the decrease of the partition length and the increase of Rayleigh number. The frequency of oscillation obtained by the variations of stream function is more similar to the experimental results than that of the average Nusselt number. The stability of oscillation grows worse with the increase of Rayleigh number. The transition Rayleigh number for the chaos is gradually decreased with the increase of the partition length.

  • PDF