• 제목/요약/키워드: Raw water system

검색결과 327건 처리시간 0.026초

열원 및 부하조건에 따른 물-공기 히트펌프 시스템의 성능분석 (Performance Analysis of Water-to-Air Heat Pump System under Water Temperature and Load Ratio)

  • 조용;이동근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.194.2-194.2
    • /
    • 2011
  • Heating and cooling performance has been analyzed for the water-source heat pump system using raw water from Daechung reservoir. During heating operation from March to May, water temperature is not good condition for a heat source due to the higher atmospheric temperature. Avearged heating load ratio is only 14.3%, and the averaged unit COP and system COP are estimated to be 2.46 and 2.15 respectively. The COP is affected considerably by the water temperature, and the unit COP is increased from 2.16 at $5^{\circ}C$ to 2.95 at $11^{\circ}C$. Cooling performance is analyzed with the measured data from June to August. During cooling operation, raw water has lower temperature by 4. $5^{\circ}C{\sim}4.7^{\circ}C$ than the atmosphere. The load ratio is 39.2%, and the averaged unit COP and system COP are estimated to be 7.25 and 6.13 respectively. The heating COP is affected by the load ratio rather than water temperature. The COP is increased for 20%~40% load ratio, while is decreased for 40%~60% load ratio. It is estimated that the compressor operation combination for 3 (two constant speed and one inverter) compressors is changed for the load ratio.

  • PDF

서울市 一部 水道栓水中 重金屬에 관한 調査硏究 (A Study on Heavy Metals at the Consumer s Tap in Seoul)

  • Lee, Byung Mu
    • 한국환경보건학회지
    • /
    • 제10권2호
    • /
    • pp.41-51
    • /
    • 1984
  • This study was performed using samples collected at Myungryundong and at Reservoirs. The purpose of this study was to investigate the differences of water quality between tap and raw water, and to analyse drinking water quality by Fe, Zn from corroded galvanized steel pipe. Results were as follows 1. The older the pipe was, the higher the concentration of Ferrum and Zinc was (t-test : p<0.05). Ferrum and Zinc also exceeded the limits in the older galvanized steel pipe. I think that this comes from the corrosion of pipe. 2. Mercury, Arsenic, Cadmium, Lead, Chomium, Argentum and Aurum not detected in raw water were not detected in tap water. Cobalt, Bismuth and Molybudenum detected in raw water were not detected in tap water. I think that this comes from the quality of raw water, the result of water treatment and the improbability of detection of above metals in water delivery system. 3. Silicon measured 2.4698ppm in raw water, but it ranged from 0.4769ppm to 1.982 ppm in tap water. Manganese measured 0.0638ppm in raw water, but it ranged from 0.0026ppm to 0.0198ppm in 17cases(31%) out of 55samples in tap water. I think that this comes from the water treatment. 4. Aluminium not detected in raw water was found in 17 cases (31%) out of the samples (55cases). It may be considered as the use of coagulants $Al_2(SO_4)_3$. $18H_2O$ and PAC (Poly Aluminium Chloride). The concentration of copper in tap water was much higher in 2 cases(3.6%) out of the samples(55) than that of copper in raw water. I think that this may come from the use of ${CuSO}_4$, the preventive of algae growth, and the result of chlorination, but further study must be necoessary to support the proof.

  • PDF

정수장내 염소요구량 자동결정시스템 개발 (Development of Automatic Decision System for Cholrination Demand in Water treatment Plant)

  • 오석영;이성룡
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.807-812
    • /
    • 2000
  • Chlorination dosage in water treatment plant of field is determined by chlorination demand experiment through two or three hours after raw water was sampled in inflow. It is impossible to continuously control fer real time because sampled water is adapted chlorination dosage after water treatment process had been proceeded. Therefore in this study, we will design informal chlorination demand system this designed system will be experimented as to water quality and accuracy of control in various conditions. Throughout these. experimental results, we will revise the system and revised system is enable to optimal control of chlorination dosage. Finally, We have developed chlorination demand system, which can automatically determination of chlorination dosage to be determined according to variety of raw water quality inflow in water treatment plant.

  • PDF

정수장내 염소요구량 자동결정시스템 개발 (Development of Automatic Decision System for Chlorination Demand in Water Treatment Plant)

  • 오석영
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.757-764
    • /
    • 2002
  • Chlorination dosage in water treatment plant of field is determined by chlorination demand experiment through two or three hours after raw water was sampled in inflow. It is impossible to continuously control for real time because the sampled water is adapted chlorination dosage after water treatment process had been proceeded. Therefore in this study, we will design informal chlorination demand system, this designed system will be experimented as to water quality and accuracy of control in various conditions. Throughout these experimental results, we will revise the system and the revised system is enable to optimal control of chlorination dosage. Finally, we have developed chlorination demand system, which can automatically determination of chlorination dosage to be determined according to variety of raw water quality inflow in water treatment plant.

Evaluation of Advanced Water Treatment Operation

  • Kim, Seung-Hyun
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2002년도 춘계 국제 학술대회
    • /
    • pp.54-64
    • /
    • 2002
  • This study evaluated advanced water treatment (AWT) system in Korea. There are currently 16 plants operating with AWT. However, no attempt has been made to evaluate AWT system. This study selected one water treatment plant with AWT (pre-ozonation + BAC). Using the operation data from 1995 to 2001 and pilot study results, the post-evaluation of the AWT system has been conducted. The study found that AWT improved water qualities of organic, ammonia, and turbidity, as expected. However, the extent of the improvement was generally short of the pilot study expectations. Pre-ozonation failed to decrease coagulant consumption. The dosage increased rather than decreased. AWT was, however, successful to decrease chlorine consumption. The chlorine reduction was related to the change in raw water characteristics and AWT introduction. Pre-ozonation failed to decrease coagulant consumption. The dosage increased rather than decreased. AWT was, however, successful to decrease chlorine consumption. The chlorine reduction was related to the change in raw water characteristics and AWT introduction, Both operation of pre-ozonation and reduced ammonia loading were responsible for the reduction. AWT increased the operation cost. Maintenance, raw water, and power cost increased, while labor and chemical cost decreased. Manpower reduction resulting form automation caused the decrease of labor cost. The reduction of chlorine consumption caused the decrease of chemical cost.

  • PDF

유기물 농도가 낮은 고품질 정수 생산을 위한 고압막여과 공정 설계 시 고려사항 (Considerations to design high-pressure membrane system to produce high quality potable water with lower organic matter concentration)

  • 전종민;김성수;서인석;김수한
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.473-480
    • /
    • 2020
  • High-pressure membrane system like nanofiltration(NF) and reverse osmosis(RO) was investigated as a part of water treatment processes to produce high quality potable water with low organic matter concentration through membrane module tests and design simulation. River water and sand filtration permeate in Busan D water treatment plant were selected as feed water, and NE4040-90 and RE4040-Fen(Toray Chemical Korea) were used as NF and RO membranes, respectively. Total organic carbon(TOC) concentrations of NF and RO permeates were mostly below 0.5 mg/l and the average TOC removal rates of NF and RO membranes were 93.99% and 94.28%, respectively, which means NF used in this study is competitive with RO in terms of organic matter removal ability. Different from ions rejection tendency, the TOC removal rate increases at higher recovery rates, which is because the portion of higher molecular weight materials in the concentrated raw water with increasing recovery rate increases. Discharge of NF/RO concentrates to rivers may not be acceptable because the increased TDS concentration of the concentrates can harm the river eco-system. Thus, the idea of using NF/RO concentrate as the raw water for industrial water production was introduced. The design simulation results with feed water and membranes used in this work reveal that the raw water guideline can be satisfied if the recovery rate of NF/RO system is designed below 80%.

상수원수 수질저하가 정수처리 비용에 미치는 영향 (Effect of raw water quality decrease on water treatment costs)

  • 김진근
    • 상하수도학회지
    • /
    • 제34권4호
    • /
    • pp.239-250
    • /
    • 2020
  • In this study, effects of five raw water quality parameters (turbidity, odor compounds caused by algae, filter clogging caused by algae, pH increase caused by algae, and organic matter) on improvements and operations costs of typical water treatment plant (WTP) were estimated. The raw water quality parameters were assumed the worst possible conditions based on the past data and costs were subsequently estimated. Results showed that new water treatment facilities were needed, such as a selective intake system, an advanced water treatment processes, a dual media filter, a carbonation facility, and a re-chlorination facility depending on water quality. Furthermore, changes needed to be made in WTP operations, such as adding powered activated carbon, increasing the injection of chlorine, adding coagulation aid, increasing the discharge of backwashed water, and increasing the operation time of dewatering facilities. Such findings showed that to reliably produce high-quality tap water and reduce water treatment costs, continuous improvements to the quality of water sources are needed.

Fabrication and Characterization of Onggi Filter for Appropriate Water Treatment Technology

  • Park, Joon-Hong;Kim, Jin-Ho;Cho, Woo-Seok;Han, Kyu-Sung;Hwang, Kwang-Taek
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.114-120
    • /
    • 2017
  • In underdeveloped countries, many people suffer from water shortage due to the absence of water supply service. Although water purifiers have provided support in such situations, it is not easy to maintain water filters without a continuous supply of consumable filters. To obtain a sustainable drinking water source, appropriate technology of water treatment is necessary. Herein, a low cost water purification system was developed using natural raw materials. A non-electric water treatment system was developed using filtration through an Onggi filter, which is a type of Korean traditional earthenware with a microporous surface. The porosity and flux of the prepared Onggi filter were 29.06% and 31.63 LMH, respectively. After purification of water with total dissolved solids of 10.4 mg/L and turbidity of 100 NTU, the total dissolved solids and turbidity of the water treated using the Onggi filter decreased by 12% and 99.8%, respectively.

제주도 삼양 수원지 RO 시설 도입 연구 (A Study on the Introduction of RO Facility for Jeju Samyang Water Source)

  • 김우찬;김진근
    • 상하수도학회지
    • /
    • 제29권6호
    • /
    • pp.601-608
    • /
    • 2015
  • Pollutants removal efficiency in pretreatment(GAC filter, multi-media filter, disk filter) and RO facilities was investigated for the Jeju Samyang spring water source where raw water intake has been stopped due to sea water intrusion. In addition, preliminary feasibility analysis was conducted between RO and groundwater intake systems. Turbidity removal in 4 different pretreatment processes was less than 25% due to low concentration of turbidity(i.e., less than 0.21 NTU), while multi-media filter is recommended for the pretreatment facility based on the low organic content in raw water as well as cheaper operation and maintenance cost. The average concentration of $Cl^-$ in raw water was 691.4 mg/L, while that of RO permeate was 9.1 mg/L(i.e., removal efficiency was 98.4%). In addition, TDS removal efficiency was 98.1%, which was quite high. The production cost for RO system($Q=4,000m^3/d$) was $362.1won/m^3$ considering installation, operation and maintenance cost for 30 years. While that of groundwater was $262.6won/m^3$ which was low compared to the RO system. However, it is recommended to introduce RO system for Samyang water source rather than new groundwater development because Samyang water source has been discharged to the sea without any usage, while groundwater can be used for other purpose as a sustainable water source.

모듈형 이동식 물생산 시스템 운전 성능 및 자연 유기물 제거 거동 평가 (Evaluation of the performance and the removal characteristics of natural organic matter in a modular mobile water production system)

  • 황유훈;양필제;송지민;홍민지;최창형;고석오;김도군
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.55-65
    • /
    • 2018
  • It is necessary to develop a mobile water production system in order to provide stable water supply in case of disasters such as floods or earthquakes. In this study, we developed a modular mobile water production system capable of producing water for various uses such as domestic water and drinking water while improving applicability in various raw water sources. The water production system consists of three stages of filtration (sand filtration - activated carbon filtration - pressure filtration) to produce domestic water and an additional reverse osmosis process to produce drinking water. In laboratory and field experiments, the domestic water production system showed excellent treatment efficiency for particulate matter, but showed limitations in the treatment of dissolved substances such as dissolved organic matter. In addition, ultraviolet irradiation was considered as additional disinfection step, because it does not form precipitates of manganese oxides after disinfection. Reverse osmosis process was added to increase the removal efficiency of dissolved substances and the treated water satisfied drinking water quality standards. Fluorescence analysis of dissolved organic matter showed that the fulvic acid-like substances in raw water was successfully removed in the reverse osmosis process. The mobile water production system developed in this study is expected to be used not only in water supply in case of disaster, but also widely used in islands and rural area.