• Title/Summary/Keyword: Ratio of the maximum to the minimum stress

Search Result 65, Processing Time 0.022 seconds

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyun-Chul;Lee, Haeng-Nam;Park, Gil-Moon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Three Dimensional In-situ Stress Distribution in the Southern Korean Peninsula and Its Application in Tunnel Analysis (한반도 3차원 지중응력의 분포와 이를 고려한 터널해석에 대한 연구)

  • 김동갑;박종관
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • The measurement of in-situ stress is essential to estimate the ground displacement and the stress distribution of a tunnel and an underground structure. In this study, the in-situ stress distribution of the Southern Korean peninsula was re-evaluated by the new 380 in-situ data which were determined by overcoring and hydrofracturing methods, and the three-din erosional numerical analysis of tunnelling was performed. The results of in-situ stress distribution show that the distribution of horizontal stress tends to be more irregular in metamorphosed(gneiss) and granite areas than in sedimentary and volcanic areas. The ratio of horizontal to vertical stresses(K-value) in volcanic area is less than 1 below the depth of 150m. The direction and magnitude of three dimensional in-situ stresses were shown simultaneously in a figure for the first time in Korea. The three-dimensional numerical analysis of tunnelling indicates that the orientation and magnitude of displacement around a tunnel are controlled mainly by the difference between the maximum and minimum horizontal stresses.

Optimum Design of the Intake Tower of Reservoir(I) - With Application of Working Stress Design Method - (저수지 취수탑의 최적설계에 관한 연구(I) -허용능력 설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.67-81
    • /
    • 1988
  • The purpose of the present study is to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir and to establish a solid foundation for the automatic optimum structural design combined with finite element analysis. The major design variables are the dimensions and steel areas of each member of the structures. The construction cost which is composed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of the working stress design method. The corresponding design guides including the standard specification for concrete structures have been also employed in deraving the constraint conditions. The present nonlinear optimization problem is solved by SUMT method. The reinforced concrete intake-tower is decomposed into three major substructures. The optimization is then conducted for both the whole structure and the substructures. The following conclusions can be drawn from the present study. 1. The basis of automatic optimum design of reinforced concrete cylindrical shell structures which is combined with finite element analysis was established. 2. The efficient optimization algorithms which can execute the automatic optimum desigh of reinforced concrete intake-tower based on the working stress design method were developed. 3. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optImization algorithms developed in this study seem to be efficient and stable. 4. The difference in construction cost between the optimum designs with the substructures and with the entire structure was found to be small and thus the optimum design with the substructures,rnay conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the tensile stress insteel for salb, the minimum lonitudinal steel ratio constraints for tower body and the shearing stress in concrete, tensile stress in steel and maximum eccentricityconstraints for footing, respectively. 6. The computer program develope in the present study can be effectively used even by an unexperienced designer for the optimum design of reinforced concrete intake-tower.

  • PDF

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

Differential Horizontal Stress Ratio for Danyang Limestone with Vertical Transversely Isotropy (횡적등방성 특성을 갖는 단양 석회암의 수평응력차비 고찰)

  • Jang, Seonghyung;Hwang, Seho;Shin, Jehyun;Kim, Tae Youn
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • To develope shale play which is one of unconventional energy resources, horizontal drilling and hydraulic fracturing are necessary and those are applied to the place where the differential horizontal stress ratio (DHSR) is low. The differential horizontal stress ratio is generally calculated by the minimum and maximum horizontal stress, but it is also calculated from dynamic elastic constants and anisotropic parameters. In this study we analyzed anisotropic properties through the core samples from Danyang limestone and calculated DHSR. The three types of core samples shaped in three directions (vertical, parallel and 45 degree to bedding) were used for laboratory test. We measured P-, S-wave velocities, and density and then calculated dynamic elastic constants, compliance and DHSR. According to the results of the core sample analysis the calculated DHSR is 0.185. Thomsen parameters of the Danyang limestone used in this study are characterized by the P- and S-wave velocities varying along the bedding symmetry axis. It is observed that the DHSR value is more affected by the change in compliance value than the Poisson's ratio. It is necessary to measure SH-wave velocity for more correct petrophysical properties.

The Effects of PV Cell's Electrical Characteristics for PV Module Application (태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Chi-Hog;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF

Characteristic of Matter Allocation of Calystegia soldanella under Water Stress (갯메꽃의 수분스트레스에 대한 물질분배 특성)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2013
  • Dry matter allocation characteristics of Calystegia soldanella, grown in pots, was analysed to assess its plasticity in response to water-stressed conditions. As water was withheld leaf water potential between the two watering treatments was similar during the first 6 days, followed by a rapid decrease in water-stressed plants. The minimum leaf water potential was -1.50 MPa on day 15 and the maximum leaf water potential was about -0.5 MPa on day 0 in water-stressed plants. In well-watered plants leaf water potential was maintained almost consistently throughout the experiment. There was no significant difference in plant dry weight between the two watering treatments for 9 days after the start of experiment and that was remarkably increased thereafter, compared with that remained without any increase in water-stressed plants. In dry mass partitioning, however, the water-stressed plants showed a great plasticity, showing that there were 1.81, 1.35 and 0.81 times increase in root, stem and leaf, respectively. Dry mass partitioning in well-watered plants varied from 2% to 5%. The difference of dry mass partitioning between the two watering treatments was reflected in leaf mass per unit area (LMA) and root/shoot (R/S) ratio. LMA in water-stressed plants was lower than that in well-watered plants, while R/S ratio in water-stressed plants was higher in well-watered plants. This means that the water-stressed plants reduced its leaf area and increased dry mass partitioning into root and stem during the progress of soil drying. These results indicate that Calystegia soldanella inhabiting in sand dune cope with water stress with high plasticity which can adjust its dry mass partitioning according to soil water conditions.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

Tensile Strain of Steel Fiber Reinforced Concrete under Fatigue Load (피로하중을 받는 강섬유보강콘크리트의 인장변형에 관한 연구)

  • 장동일;채원규;박철우;민인기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.82-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC (steel fiber reinforced concrete)to investigate the flexural tensile behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. Beam specimens of 10$\times$10$\times$60cm are used. the specimen series are classified according to the steel fiber contents varying 0.5. 1.0, 1.5%, and to the steel fiber aspect ratios varying 60, 80, 100. The three point loading system was used in the fatigue tests. The minimum value of repeated loading was fixed at 10.0kgf and maximum value was 75% to static ultimate strength for periodically using concrete strain gages located at the lower end of the mid-span, and the stress-strain curves were drawn for each specimens, respectively. From the tests result, it was found that the larger steel fiber content and the smaller the steel fiber aspect ratio is , the tensile strain of SFRC under fatigue load proportionally increases. By the regression analysis on these results, the empirical formulae to predict the tensile strain of SFRC were suggested. In comparison of the tensile elastic modulus under fatigue load, it was also found that the larger steel fiber content and the smaller steel fiber aspect ratio is , the smaller decreasing rate of the stiffness of SFRC under fatigue load decreased.

  • PDF