• Title/Summary/Keyword: Ratio of permeability

Search Result 743, Processing Time 0.024 seconds

Evaluation of Permeability Characteristics of Kimhae Clay by Laboratory Tests. (실내실험을 통한 김해점토의 투수특성 평가)

  • 김동휘;임형덕;김진원;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.647-654
    • /
    • 2000
  • During consolidation, the permeability of clay decreases with void ratio because of the reduction in total void space. After Kozeny(1927) and Carman(1956), many researchers have proposed the relations between void ratio and permeability. Most of the relations are expressed in the following forms as : (1) log e - log k(1+e), (2) e - log k, or (3) log e - log k. These relations have been found valid for a large number of normally consolidated clays. From laboratory test(CRS and I $L_{CON}$) results, the relation between void ratio and permeability of Kimhae clay was well defined in all of the three forms. Permeability change index, $C_{k}$, of Kimhae clay was in the range of 0.64~1,03 and average value of $C_{k}$ was 0.821. And the test results satisfied the experimental correlation between $C_{k}$ and e, $C_{k}$=0.5e. In log e - log k(1+e) relation, constant C was in the range of 1.91~4.74$\times$10$^{-8}$ cm/sec and n was in the range of 3.74~4.60.c and n was in the range of 3.74~4.60.74~4.60.0.

  • PDF

Permeability Characteristics of Sedimented Clayey Soils (점토퇴적지반의 투수특성 연구)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.72-77
    • /
    • 2005
  • The oedometer test and the constant rate of consolidtion test were performed using the sedimented clayey soil sample. The characteristics of permeability of the clayey soil such as anisotropy, permeability change index, relation with void ratio, and influencing factors, were investigated from the lab. test results. Analyzing the permeability characteristics, the representative permeability coefficient was proposed.

  • PDF

Analysis on Effects of Permeability in Contaminated Area on Extraction of Contaminants from Soil Using Vertical Drains (연직배수재에 의한 토양오염물질 추출에 지반의 투수계수가 미치는 영향분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Kang, Byung-Yoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.373-381
    • /
    • 2005
  • The permeability of contaminated soil and elapsed time are important considering factors to in-situ soil remadiation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one (C/$C_0$) with time and spatial changes in contaminated area which embedded with vertical drains. The contaminant concentration ratio (C/$C_0$) is analyzed with time and spatial changes in three different permeability areas which are $k=l.0{\times}10^{-5,}$ $l.0{\times}l0^{-6,}$ $l.0{\times}l0^{-7}\;_{m/s}$ by using the Gabr's equation. Results from numerical analysis indicate that the ratio (C/$C_0$) decreases as the elapsed time increases in every point, however, remediation efficiency decreases as the analyzing point is far from injection well to extraction one and is deeper from top level of contaminated area. And also it decreases as the permeability of contaminated area decreases. Especially, the lower permeability of contaminated area effects directly on the soil remediation, in this research, under condition which the permeability of contaminated area is $l.0{\times}l0^{-7}\;_{m/s}$, the maximum time needed to attain 90% clean up level ($t_{90}$) is 65,690 hours(7.5 years), it takes so much time to clean the low permeability contaminated soil.

  • PDF

The characteristics of radial consolidation & permeability on the inflow & outflow condition (내.외향류 방사형 압밀/투수 특성에 관한 연구)

  • 천홍래;김지용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.109-116
    • /
    • 1999
  • This study is to make clear for the characteristics of radial drainage consolidation/permeability At the result of the radial drainage consolidation / permeability test, the permeability of outflow drainage condition is higher than Inflow drainage condition and the time for the end of consolidation, outflow drainage condition is shorter than inflow drainage condition. So drainage area ratio test and control of hydraulic gradient test are carry out to analysis this result. Finally, compared with the characteristics on the condition of inflow and outflow permeability and consolidation.

  • PDF

Influence of Mix Factors and Mixing Ratio of Aggregate on the Strength and Water Permeability of Porous Concrete (포러스 콘크리트의 배합요인 및 골재 혼합비율이 강도 및 투수성능에 미치는 영향)

  • 김무한;김규용;백용관
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.91-98
    • /
    • 2000
  • Porous concrete having continuous voids is gaining more interest as an ecological material. It has several useful functions such as water and air permeability, sound absorption, etc. Its strengths are considerably lower than those of conventional concrete due to the large and continuous voids in it. This study has been carried out to investigate the influence of mix factors and mixture proportion of aggregate on the strengths and water permeability of porous concrete. And it has been carried out to investigate the evaluation of void of porous concrete by the ultra-sonic pulse velocity. The results f this study are as follows: 1) The theoretical void ratio has greater influence than any other factor on the strengths and water permeability of porous concrete. And it is a little affected by the replacement proportion of silica-fume and mixture proportion of aggregate. 2) Because the coefficients of correlation between the void ratio and ultra-sonic pulse velocity were relatively high, it will be possible that the void ratio is predicted by the ultra-sonic pulse velocity.

A Study on the Void Ratio and Permeability Coefficient Properties of fiber Reinforced Porous Concrete (섬유보강 포러스 콘크리트의 공극률과 투수계수 특성에 관한 연구)

  • Kim, Jeong-Hwan;Cho, Gwang-Yoen;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.677-682
    • /
    • 2000
  • Porous concrete is defined as d type of concrete for which the fine aggregate component the matrix is entirely omitted. Although it had been used as a building material in Europe for over 60 years, low strength and high void ratio limited its application in the past. In recent years, however high void ratio of concrete has been recognized again and can be used as an environmental conscious material, for example, parking lots, draining light-traffic-volume pavements and as sea water purifying material. The result of an experiment on the void ratio of fiber reinforced porous concrete and its influence on the compressive strength and permeability relationship of concrete are reported in this paper. One-sized coarse aggregate of 5-10mm, and three absolute content of fiber(steel fiber, polyprophylen fiber) were used. The result of measured void ratio, permeability coefficient and compressive strength show a small variation. Void ratio, permeability coefficient and compressive strength of fiber reinforced porous concrete depend on contents of fiber and absolute volume ratios of paste to aggregate.

  • PDF

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

A Study on the Properties of EMI filter for the Ni/Zn ratio of Ni-Zn Ferrite (Ni-Zn ferrite의 Ni/Zn비 변화에 따른 EMI 비드 필터 특성 연구)

  • 이재영;김왕섭;손용배;김경용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.848-853
    • /
    • 1993
  • The properties of ferrite bead, a low-pass filter, are determined by the frequency dispersion of the complex permeability. In this study, frequency dispersion of complex permeability of the Ni-Zn ferrites with different Ni/Zn ratio were investigated. Relationship between the behavior of filter and dispersion of complex permeability of a ferrite was studied. As a result, it was concluded that the compositions for Ni/Zn ratio of $0.41{\sim}0.47$, having high initial permeability and good sensitivity, were favorable as a ferrite bead filter.

  • PDF

An Experimental Study on Performance in Elevation of Porous Polymer Concrete (투수성 폴리머 콘크리트의 성능 향상에 관한 실험적 연구)

  • Choi, Kyu-Hyung;Lho, Byeong-Cheol;Joo, Myung-Ki;Lee, Bok-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.953-956
    • /
    • 2008
  • The purpose of this study is to ascertain the void ratio, permeability coefficient and compressive strength of porous polymer concretes with unsaturated polyester. The porous polymer concretes using unsaturated polyester with polymer binder contents of 3.5, 4.0, 4.5 and 5.5% are prepared, and tested for void ratio, permeability coefficient and compressive strength. As a result, void ratio and permeability coefficient of porous polymer concrete decrease with increasing polymer binder content. However, the compressive strength of porous polymer concrete increase with increasing polymer binder content. The compressive strength of porous polymer concrete decrease with increasing permeability coefficient.

  • PDF

Influence of Theoretical Void Ratio, Grading of Aggregate and Curing Method on Strength and Water Permeability of Porous Concrete (이론공극율, 골재입도 및 양생방법이 포러스콘크리트의 강도 및 투수성능에 미치는 영향)

  • 김재환;유범재;최세진;백용관;박정호;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.373-378
    • /
    • 2000
  • The objective of this study was to investigate the influence the influence of theoretical void ratio(T.V.R), grading of aggregate and curing method on the strength and water permeability of porous concrete, and the reduction proportion of water permeability by these factors. The results of the study showed that its strength and water permeability were greatly depended on the T.V.R and grading of aggregate, but didn't on the curing method. And, when the T.V.R and grading of aggregate were increased, the reduction proportion of water permeability was small. As the relation ship between its physical properties and non-destruction test values was very high, its use for the estimation of the physical properties will be useful.

  • PDF